XII. The Resolution of Revolutions

The textbooks we have just been discussing are produced only in the aftermath of a scientific revolution. They are the bases for a new tradition of normal science. In taking up the question of their structure we have clearly missed a step. What is the process by which a new candidate for paradigm replaces its predecessor? Any new interpretation of nature, whether a discovery or a theory, emerges first in the mind of one or a few individuals. It is they who first learn to see science and the world differently, and their ability to make the transition is facilitated by two circumstances that are not common to most other members of their profession. Invariably their attention has been intensely concentrated upon the crisis-provoking problems; usually, in addition, they are men so young or so new to the crisis-ridden field that practice has committed them less deeply than most of their contemporaries to the world view and rules determined by the old paradigm. How are they able, what must they do, to convert the entire profession or the relevant professional subgroup to their way of seeing science and the world? What causes the group to abandon one tradition of normal research in favor of another?

To see the urgency of those questions, remember that they are the only reconstructions the historian can supply for the philosopher's inquiry about the testing, verification, or falsification of established scientific theories. In so far as he is engaged in normal science, the research worker is a solver of puzzles, not a tester of paradigms. Though he may, during the search for a particular puzzle's solution, try out a number of alternative approaches, rejecting those that fail to yield the desired result, he is not testing the paradigm when he does so. Instead he is like the chess player who, with a problem stated and the board physically or mentally before him, tries out various alternative moves in the search for a solution. These trial attempts, whether by the chess player or by the scientist, are trials only of themselves, not of the rules of the game. They are possible only so long as the paradigm itself is taken for granted. Therefore, paradigm-testing occurs only after persistent failure to solve a noteworthy puzzle has given rise to crisis. And even then it occurs only after the sense of crisis has evoked an alternate candidate for paradigm. In the sciences the testing situation never consists, as puzzle-solving does, simply in the comparison of a single paradigm with nature. Instead, testing occurs as part of the competition between two rival paradigms for the allegiance of the scientific community.

Closely examined, this formulation displays unexpected and probably significant parallels to two of the most popular contemporary philosophical theories about verification. Few philosophers of science still seek absolute criteria for the verification of scientific theories. Noting that no theory can ever be exposed to all possible relevant tests, they ask not whether a theory has been verified but rather about its probability in the light of the evidence that actually exists. And to answer that question one important school is driven to compare the ability of different theories to explain the evidence at hand. That insistence on comparing theories also characterizes the historical situation in which a new theory is accepted. Very probably it points one of the directions in which future discussions of verification should go.

In their most usual forms, however, probabilistic verification theories all have recourse to one or another of the pure or neutral observation-languages discussed in Section X. One probabilistic theory asks that we compare the given scientific theory with all others that might be imagined to fit the same collection of observed data. Another demands the construction in imagination of all the tests that the given scientific theory might conceivably be asked to pass.1 Apparently some such construction is necessary for the computation of specific probabilities, absolute or relative, and it is hard to see how such a construction can

possibly be achieved. If, as I have already urged, there can be no scientifically or empirically neutral system of language or concepts, then the proposed construction of alternate tests and theories must proceed from within one or another paradigm-based tradition. Thus restricted it would have no access to all possible experiences or to all possible theories. As a result, probabilistic theories disguise the verification situation as much as they illuminate it. Though that situation does, as they insist, depend upon the comparison of theories and of much widespread evidence, the theories and observations at issue are always closely related to ones already in existence. Verification is like natural selection: it picks out the most viable among the actual alternatives in a particular historical situation. Whether that choice is the best that could have been made if still other alternatives had been available or if the data had been of another sort is not a question that can usefully be asked. There are no tools to employ in seeking answers to it.

A very different approach to this whole network of problems has been developed by Karl R. Popper who denies the existence of any verification procedures at all. Instead, he emphasizes the importance of falsification, i.e., of the test that, because its outcome is negative, necessitates the rejection of an established theory. Clearly, the goal thus attributed to falsification is much like the one this essay assigns to anomalous experiences, i.e., to experiences that, by evoking crisis, prepare the way for a new theory. Nevertheless, anomalous experiences may not be identified with falsifying ones. Indeed, I doubt that the latter exist. As has repeatedly been emphasized before, no theory ever solves all the puzzles with which it is confronted at a given time; nor are the solutions already achieved often perfect. On the contrary, it is just the incompleteness and imperfection of the existing data-theory fit that, at any time, define many of the puzzles that characterize normal science. If any and every failure to fit were ground for theory rejection, all theories ought to be rejected at all times. On the other hand, if only severe failure

\[^{2}\text{K. R. Popper, The Logic of Scientific Discovery (New York, 1959), esp. chaps. i--iv.}\]

to fit justifies theory rejection, then the Popperians will require some criterion of "improbability" or of "degree of falsification." In developing one they will almost certainly encounter the same network of difficulties that has haunted the advocates of the various probabilistic verification theories.

Many of the preceding difficulties can be avoided by recognizing that both of these prevalent and opposed views about the underlying logic of scientific inquiry have tried to compress two largely separate processes into one. Popper's anomalous experience is important to science because it evokes competitors for an existing paradigm. But falsification, though it surely occurs, does not happen with, or simply because of, the emergence of an anomaly or falsifying instance. Instead, it is a subsequent and separate process that might equally well be called verification since it consists in the triumph of a new paradigm over the old one. Furthermore, it is in that joint verification-falsification process that the probabilist's comparison of theories plays a central role. Such a two-stage formulation has, I think, the virtue of great verisimilitude, and it may also enable us to begin explicating the role of agreement (or disagreement) between fact and theory in the verification process. To the historian, at least, it makes little sense to suggest that verification is establishing the agreement of fact with theory. All historically significant theories have agreed with the facts, but only more or less. There is no more precise answer to the question whether or how well an individual theory fits the facts. But questions much like that can be asked when theories are taken collectively or even in pairs. It makes a great deal of sense to ask which of two actual and competing theories fits the facts better. Though neither Priestley's nor Lavoisier's theory, for example, agreed precisely with existing observations, few contemporaries hesitated more than a decade in concluding that Lavoisier's theory provided the better fit of the two.

This formulation, however, makes the task of choosing between paradigms look both easier and more familiar than it is. If there were but one set of scientific problems, one world within which to work on them, and one set of standards for their
solution, paradigm competition might be settled more or less routinely by some process like counting the number of problems solved by each. But, in fact, these conditions are never met completely. The proponents of competing paradigms are always at least slightly at cross-purposes. Neither side will grant all the non-empirical assumptions that the other needs in order to make its case. Like Proust and Berthollet arguing about the composition of chemical compounds, they are bound partly to talk through each other. Though each may hope to convert the other to his way of seeing his science and its problems, neither may hope to prove his case. The competition between paradigms is not the sort of battle that can be resolved by proofs.

We have already seen several reasons why the proponents of competing paradigms must fail to make complete contact with each other’s viewpoints. Collectively these reasons have been described as the incommensurability of the pre- and postrevolutionary normal-scientific traditions, and we need only recapitulate them briefly here. In the first place, the proponents of competing paradigms will often disagree about the list of problems that any candidate for paradigm must resolve. Their standards or their definitions of science are not the same. Must a theory of motion explain the cause of the attractive forces between particles of matter or may it simply note the existence of such forces? Newton’s dynamics was widely rejected because, unlike both Aristotle’s and Descartes’s theories, it implied the latter answer to the question. When Newton’s theory had been accepted, a question was therefore banished from science. That question, however, was one that general relativity may proudly claim to have solved. Or again, as disseminated in the nineteenth century, Lavoisier’s chemical theory inhibited chemists from asking why the metals were so much alike, a question that phlogistic chemistry had both asked and answered. The transition to Lavoisier’s paradigm had, like the transition to Newton’s, meant a loss not only of a permissible question but of an achieved solution. That loss was not, however, permanent either. In the twentieth century questions about the qualities of chemical substances have entered science again, together with some answers to them.

More is involved, however, than the incommensurability of standards. Since new paradigms are born from old ones, they ordinarily incorporate much of the vocabulary and apparatus, both conceptual and manipulative, that the traditional paradigm had previously employed. But they seldom employ these borrowed elements in quite the traditional way. Within the new paradigm, old terms, concepts, and experiments fall into new relationships one with the other. The inevitable result is what we must call, though the term is not quite right, a misunderstanding between the two competing schools. The laymen who scoffed at Einstein’s general theory of relativity because space could not be “curved”—it was not that sort of thing—were not simply wrong or mistaken. Nor were the mathematicians, physicists, and philosophers who tried to develop a Euclidean version of Einstein’s theory. What had previously been meant by space was necessarily flat, homogeneous, isotropic, and unaffected by the presence of matter. If it had not been, Newtonian physics would not have worked. To make the transition to Einstein’s universe, the whole conceptual web whose strands are space, time, matter, force, and so on, had to be shifted and laid down again on nature whole. Only men who had together undergone or failed to undergo that transformation would be able to discover precisely what they agreed or disagreed about. Communication across the revolutionary divide is inevitably partial. Consider, for another example, the men who called Copernicus mad because he proclaimed that the earth moved. They were not either just wrong or quite wrong. Part of what they meant by ‘earth’ was fixed position. Their earth, at least, could not be moved. Correspondingly, Copernicus’ innovation was not simply to move the earth. Rather, it was a whole new way of regarding the problems of physics and astronomy.

\[3\] For lay reactions to the concept of curved space, see Philipp Frank, Einstein, His Life and Times, trans. and ed. G. Rosen and S. Kusaka (New York, 1947), pp. 142–46. For a few of the attempts to preserve the gains of general relativity within a Euclidean space, see C. Nordmann, Einstein and the Universe, trans. J. McCabe (New York, 1922), chap. ix.
one that necessarily changed the meaning of both 'earth' and 'motion.'4 Without those changes the concept of a moving earth was mad. On the other hand, once they had been made and understood, both Descartes and Huyghens could realize that the earth's motion was a question with no content for science.5

These examples point to the third and most fundamental aspect of the incommensurability of competing paradigms. In a sense that I am unable to explicate further, the proponents of competing paradigms practice their trades in different worlds. One contains constrained bodies that fall slowly, the other pendulums that repeat their motions again and again. In one, solutions are compounds, in the other mixtures. One is embedded in a flat, the other in a curved, matrix of space. Practicing in different worlds, the two groups of scientists see different things when they look from the same point in the same direction. Again, that is not to say that they can see anything they please. Both are looking at the world, and what they look at has not changed. But in some areas they see different things, and they see them in different relations one to the other. That is why a law that cannot even be demonstrated to one group of scientists may occasionally seem intuitively obvious to another. Equally, it is why, before they can hope to communicate fully, one group or the other must experience the conversion that we have been calling a paradigm shift. Just because it is a transition between incommensurables, the transition between competing paradigms cannot be made a step at a time, forced by logic and neutral experience. Like the gestalt switch, it must occur all at once (though not necessarily in an instant) or not at all.

How, then, are scientists brought to make this transposition? Part of the answer is that they are very often not. Copernicanism made few converts for almost a century after Copernicus' death. Newton's work was not generally accepted, particularly on the Continent, for more than half a century after the Prin-

cipia appeared.6 Priestley never accepted the oxygen theory, nor Lord Kelvin the electromagnetic theory, and so on. The difficulties of conversion have often been noted by scientists themselves. Darwin, in a particularly perceptive passage at the end of his Origin of Species, wrote: "Although I am fully convinced of the truth of the views given in this volume..., I by no means expect to convince experienced naturalists whose minds are stocked with a multitude of facts all viewed, during a long course of years, from a point of view directly opposite to mine. But I look with confidence to the future,—to young and rising naturalists, who will be able to view both sides of the question with impartiality."7 And Max Planck, surveying his own career in his Scientific Autobiography, sadly remarked that "a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."8

These facts and others like them are too commonly known to need further emphasis. But they do need re-evaluation. In the past they have most often been taken to indicate that scientists, being only human, cannot always admit their errors, even when confronted with strict proof. I would argue, rather, that in these matters neither proof nor error is at issue. The transfer of allegiance from paradigm to paradigm is a conversion experience that cannot be forced. Lifelong resistance, particularly from those whose productive careers have committed them to an older tradition of normal science, is not a violation of scientific standards but an index to the nature of scientific research itself. The source of resistance is the assurance that the older paradigm will ultimately solve all its problems, that nature can be shoved

4 T. S. Kuhn, The Copernican Revolution (Cambridge, Mass., 1957), chaps. III, iv, and vii. The extent to which heliocentrism was more than a strictly astronomical issue is a major theme of the entire book.

into the box the paradigm provides. Inevitably, at times of revolution, that assurance seems stubborn and pigheaded as indeed it sometimes becomes. But it is also something more. That same assurance is what makes normal or puzzle-solving science possible. And it is only through normal science that the professional community of scientists succeeds, first, in exploiting the potential scope and precision of the older paradigm and, then, in isolating the difficulty through the study of which a new paradigm may emerge.

Still, to say that resistance is inevitable and legitimate, that paradigm change cannot be justified by proof, is not to say that no arguments are relevant or that scientists cannot be persuaded to change their minds. Though a generation is sometimes required to effect the change, scientific communities have again and again been converted to new paradigms. Furthermore, these conversions occur not despite the fact that scientists are human but because they are. Though some scientists, particularly the older and more experienced ones, may resist indefinitely, most of them can be reached in one way or another. Conversions will occur a few at a time until, after the last holdouts have died, the whole profession will again be practicing under a single, but now a different, paradigm. We must therefore ask how conversion is induced and how resisted.

What sort of answer to that question may we expect? Just because it is asked about techniques of persuasion, or about argument and counterargument in a situation in which there can be no proof, our question is a new one, demanding a sort of study that has not previously been undertaken. We shall have to settle for a very partial and impressionistic survey. In addition, what has already been said combines with the result of that survey to suggest that, when asked about persuasion rather than proof, the question of the nature of scientific argument has no single or uniform answer. Individual scientists embrace a new paradigm for all sorts of reasons and usually for several at once. Some of these reasons—for example, the sun worship that helped make Kepler a Copernican—lie outside the apparent sphere of science entirely. Others must depend upon idiosyncracies of autobiography and personality. Even the nationality or the prior reputation of the innovator and his teachers can sometimes play a significant role. Ultimately, therefore, we must learn to ask this question differently. Our concern will not then be with the arguments that in fact convert one or another individual, but rather with the sort of community that always sooner or later reforms as a single group. That problem, however, I postpone to the final section, examining meanwhile some of the sorts of argument that prove particularly effective in the battles over paradigm change.

Probably the single most prevalent claim advanced by the proponents of a new paradigm is that they can solve the problems that have led the old one to a crisis. When it can legitimately be made, this claim is often the most effective one possible. In the area for which it is advanced the paradigm is known to be in trouble. That trouble has repeatedly been explored, and attempts to remove it have again and again proved vain. "Crucial experiments"—those able to discriminate particularly sharply between the two paradigms—have been recognized and attested before the new paradigm was even invented. Copernicus thus claimed that he had solved the long- vexing problem of the length of the calendar year. Newton that he had reconciled terrestrial and celestial mechanics. Lavoisier that he had solved the problems of gas-identity and of weight relations, and Einstein that he had made electrodynamics compatible with a revised science of motion.

Claims of this sort are particularly likely to succeed if the new paradigm displays a quantitative precision strikingly better than

9 For the role of reputation, consider the following: Lord Rayleigh, at a time when his reputation was established, submitted to the British Association a paper on some paradoxes of electrodynamics. His name was inadvertently omitted when the paper was first sent, and the paper itself was first rejected as the work of some "paradoxer." Shortly afterwards, with the author's name in place, the paper was accepted with profuse apologies (ibid. 4th Baron Rayleigh, John William Strutt, Third Baron Rayleigh [New York, 1924], p. 228).
its older competitor. The quantitative superiority of Kepler's Rudolphine tables to all those computed from the Ptolemaic theory was a major factor in the conversion of astronomers to Copernicanism. Newton's success in predicting quantitative astronomical observations was probably the single most important reason for his theory's triumph over its more reasonable but uniformly qualitative competitors. And in this century the striking quantitative success of both Planck's radiation law and the Bohr atom quickly persuaded many physicists to adopt them even though, viewing physical science as a whole, both these contributions created many more problems than they solved.14

The claim to have solved the crisis-provoking problems is, however, rarely sufficient by itself. Nor can it always legitimately be made. In fact, Copernicus' theory was not more accurate than Ptolemy's and did not lead directly to any improvement in the calendar. Or again, the wave theory of light was not, for some years after it was first announced, even as successful as its corpuscular rival in resolving the polarization effects that were a principal cause of the optical crisis. Sometimes the looser practice that characterizes extraordinary research will produce a candidate for a paradigm that initially helps not at all with the problems that have evoked crisis. When that occurs, evidence must be drawn from other parts of the field as it often is anyway. In those other areas particularly persuasive arguments can be developed if the new paradigm permits the prediction of phenomena that had been entirely unsuspected while the old one prevailed.

Copernicus' theory, for example, suggested that planets should be like the earth, that Venus should show phases, and that the universe must be vastly larger than had previously been supposed. As a result, when sixty years after his death the telescope suddenly displayed mountains on the moon, the phases of Venus, and an immense number of previously unsuspected stars, those observations brought the new theory a great many converts, particularly among non-astronomers.12 In the case of the wave theory, one main source of professional conversions was even more dramatic. French resistance collapsed suddenly and relatively completely when Fresnel was able to demonstrate the existence of a white spot at the center of the shadow of a circular disk. That was an effect that not even he had anticipated but that Poisson, initially one of his opponents, had shown to be a necessary if absurd consequence of Fresnel's theory.13 Because of their shock value and because they have so obviously not been "built into" the new theory from the start, arguments like these prove especially persuasive. And sometimes that extra strength can be exploited even though the phenomenon in question had been observed long before the theory that accounts for it was first introduced. Einstein, for example, seems not to have anticipated that general relativity would account with precision for the well-known anomaly in the motion of Mercury's perihelion, and he experienced a corresponding triumph when it did so.14

All the arguments for a new paradigm discussed so far have been based upon the competitors' comparative ability to solve problems. To scientists those arguments are ordinarily the most significant and persuasive. The preceding examples should leave no doubt about the source of their immense appeal. But, for reasons to which we shall shortly revert, they are neither individually nor collectively compelling. Fortunately, there is also another sort of consideration that can lead scientists to reject an old paradigm in favor of a new. These are the arguments, rarely made entirely explicit, that appeal to the individual's sense of the appropriate or the aesthetic—the new theory is said to be "neater," "more suitable," or "simpler" than the old. Probably

[14] See ibid., II (1959), 151-80, for the development of general relativity. For Einstein's reaction to the precise agreement of the theory with the observed motion of Mercury's perihelion, see the letter quoted in F. A. Schippp (ed.), Albert Einstein, Philosopher-Scientist (Evanston, Ill., 1949), p. 10.
The Structure of Scientific Revolutions

such arguments are less effective in the sciences than in mathematics. The early versions of most new paradigms are crude. By the time their full aesthetic appeal can be developed, most of the community has been persuaded by other means. Nevertheless, the importance of aesthetic considerations can sometimes be decisive. Though they often attract only a few scientists to a new theory, it is upon those few that its ultimate triumph may depend. If they had not quickly taken it up for highly individual reasons, the new candidate for paradigm might never have been sufficiently developed to attract the allegiance of the scientific community as a whole.

To see the reason for the importance of these more subjective and aesthetic considerations, remember what a paradigm debate is about. When a new candidate for paradigm is first proposed, it has rarely solved more than a few of the problems that confront it, and most of those solutions are still far from perfect. Until Kepler, the Copernican theory scarcely improved upon the predictions of planetary position made by Ptolemy. When Lavoisier saw oxygen as "the air itself entire," his new theory could cope with all the problems presented by the proliferation of new gases, a point that Priestley made with great success in his counterattack. Cases like Fresnel's white spot are extremely rare. Ordinarily, it is only much later, after the new paradigm has been developed, accepted, and exploited that apparently decisive arguments—the Foucault pendulum to demonstrate the rotation of the earth or the Fizeau experiment to show that light moves faster in air than in water—are developed. Producing them is part of normal science, and their role is not in paradigm debate but in postrevolutionary texts.

Before those texts are written, while the debate goes on, the situation is very different. Usually the opponents of a new paradigm can legitimately claim that even in the area of crisis it is little superior to its traditional rival. Of course, it handles some problems better, has disclosed some new regularities. But the older paradigm can presumably be articulated to meet these challenges as it has met others before. Both Tycho Brahe's earth-centered astronomical system and the later versions of the phlogiston theory were responses to challenges posed by a new candidate for paradigm, and both were quite successful. In addition, the defenders of traditional theory and procedure can almost always point to problems that its new rival has not solved but that for their view are no problems at all. Until the discovery of the composition of water, the combustion of hydrogen was a strong argument for the phlogiston theory and against Lavoisier's. And after the oxygen theory had triumphed, it could still not explain the preparation of a combustible gas from carbon, a phenomenon to which the phlogistonists had pointed as strong support for their view. Even in the area of crisis, the balance of argument and counterargument can sometimes be very close indeed. And outside that area the balance will often decisively favor the tradition. Copernicus destroyed a time-honored explanation of terrestrial motion without replacing it; Newton did the same for an older explanation of gravity, Lavoisier for the common properties of metals, and so on. In short, if a new candidate for paradigm had to be judged from the start by hard-headed people who examined only relative problem-solving ability, the sciences would experience very few major revolutions. Add the counterarguments generated by what we previously called the incommensurability of paradigms, and the sciences might experience no revolutions at all.

But paradigm debates are not really about relative problem-solving ability, though for good reasons they are usually couched in those terms. Instead, the issue is which paradigm should in the future guide research on problems many of which neither competitor can yet claim to resolve completely. A decision between alternate ways of practicing science is called for, and in the circumstances that decision must be based less on

The Resolution of Revolutions

156

157

past achievement than on future promise. The man who embraces a new paradigm at an early stage must often do so in defiance of the evidence provided by problem-solving. He must, that is, have faith that the new paradigm will succeed with the many large problems that confront it, knowing only that the older paradigm has failed with a few. A decision of that kind can only be made on faith.

That is one of the reasons why prior crisis proves so important. Scientists who have not experienced it will seldom renounce the hard evidence of problem-solving to follow what may easily prove and will be widely regarded as a will-o’-the-wisp. But crisis alone is not enough. There must also be a basis, though it need be neither rational nor ultimately correct, for faith in the particular candidate chosen. Something must make at least a few scientists feel that the new proposal is on the right track, and sometimes it is only personal and inarticulate aesthetic considerations that can do that. Men have been converted by them at times when most of the articulate technical arguments pointed the other way. When first introduced, neither Copernicus’ astronomical theory nor De Broglie’s theory of matter had many other significant grounds of appeal. Even today Einstein’s general theory attracts men principally on aesthetic grounds, an appeal that few people outside of mathematics have been able to feel.

This is not to suggest that new paradigms triumph ultimately through some mystical aesthetic. On the contrary, very few men desert a tradition for these reasons alone. Often those who do turn out to have been misled. But if a paradigm is ever to triumph it must gain some first supporters, men who will develop it to the point where hardheaded arguments can be produced and multiplied. And even those arguments, when they come, are not individually decisive. Because scientists are reasonable men, one or another argument will ultimately persuade many of them. But there is no single argument that can or should persuade them all. Rather than a single group conversion, what occurs is an increasing shift in the distribution of professional allegiances.

At the start a new candidate for paradigm may have few supporters, and on occasions the supporters’ motives may be suspect. Nevertheless, if they are competent, they will improve it, explore its possibilities, and show what it would be like to belong to the community guided by it. And as that goes on, if the paradigm is one destined to win its fight, the number and strength of the persuasive arguments in its favor will increase. More scientists will then be converted, and the exploration of the new paradigm will go on. Gradually the number of experiments, instruments, articles, and books based upon the paradigm will multiply. Still more men, convinced of the new view’s fruitfulness, will adopt the new mode of practicing normal science, until at last only a few elderly hold-outs remain. And even they, we cannot say, are wrong. Though the historian can always find men—Priestley, for instance—who were unreasonable to resist for as long as they did, he will not find a point at which resistance becomes illogical or unscientific. At most he may wish to say that the man who continues to resist after his whole profession has been converted has ipso facto ceased to be a scientist.