
Milky Way Rotation, Orbits, and Epicycles



Milky Way Rotation Speed

Important: for this discussion, V refers to the rotation speed, not the speed 
relative to the LSR. And also assume stars are on circular orbits. 

Estimate of V(R0) from kinematics of globular clusters and halo stars: ∼ 200 
km/s. But how can we map this as a function of radius?

Think about the observed radial velocity of a star, which is a combination of 
our motion and its motion:

𝑣" = 𝑉∗ cos 𝛼 − 𝑉$ sin ℓ

If we define the angular velocity as Ω = 𝑉/𝑅 and use the law of sines, this 
turns into

𝑣" = Ω∗ − Ω* 𝑅*	sin ℓ

We can make similar arguments about the tangential velocity

𝑣+ = Ω∗ − Ω* 𝑅* cos ℓ − Ω∗𝑑

courtesy Matt Bershady (UWisc)
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https://en.wikipedia.org/wiki/Law_of_sines


Milky Way Rotation Speed

Focus now on radial velocities: 𝑣"= Ω∗ − Ω* 𝑅*	sin ℓ

Nominally, since Ω = 𝑉/𝑅, we need to know distances to get R’s. 

But notice that along that line of sight, the maximum velocity measured will 
be at the tangent point T. At that point 𝑑 = 𝑅! cos ℓ .

We also need to know Ω! ≡	𝑉!/𝑅!. Can get this by knowing R0 and V0, or 
(now) by measuring the proper motion of the Sgr A*, the radio source at the 
Galactic Center.

courtesy Matt Bershady (UWisc)

Sgr A* appears to move 
because we are moving. Its 
angular motion on the sky is 
our angular motion through 
the Galaxy.

Ω! = 29.5 km/s/kpc 

Reid & Brunthaler 04 
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https://ui.adsabs.harvard.edu/abs/2004ApJ...616..872R/abstract


Want to map velocities of objects in the disk moving on circular orbits. What kinds of objects are these? gas clouds!

21-cm HI emission: no extinction at radio wavelengths. Map the HI velocities as a function of Galactic longitude, look for 
maximum velocity. Imagine gas clouds strung out along some line of sight, and the velocities you measure:

The velocity of cloud C should be the circular speed at 𝑅"#$ = 𝑅! sin ℓ .

Works well inside the solar circle: R < R0. Beyond that, there is no tangent point and actual distances are needed. Use 
other tracers of young stars: Cepheids, HII regions, etc.

Milky Way Rotation Speed



Milky Way Rotation Curve
Sofue 09

IAU “standard”:

R0 = 8.5 kpc
Vc(R0) = 220 km/s

(but these numbers 
have been updated….)

https://ui.adsabs.harvard.edu/abs/2009PASJ...61..153S/abstract


Mroz+ 19
Milky Way Rotation Curve 

Gaia Cepheid data
plus

updated R0

Vc(R0) = 234 km/s

https://ui.adsabs.harvard.edu/abs/2019ApJ...870L..10M/abstract


Rotation Curve, Mass Density, Potential (a review of PHYS 1)

A spherical density distribution ρ(𝑟) leads to a interior mass

𝑀 < 𝑟 = 4𝜋A
!

%
𝜌(𝑟)𝑟&𝑑𝑟

which leads to a gravitational potential given by

𝜙 𝑟 = −4𝜋𝐺
1
𝑟
A
!

%
𝑟&𝜌 𝑟 𝑑𝑟 + A

%

'
𝑟𝜌 𝑟 𝑑𝑟

The force felt by a particle at distance 𝑟 is given by

𝐹⃗ = 𝑚𝑎⃗ = −𝑚∇𝜙𝑟̂ = −
𝐺𝑀 < 𝑟 𝑚

𝑟& 𝑟̂

which leads to a circular speed given by

𝑉(& = 𝑟
𝜕𝜙
𝜕𝑟 =

𝐺𝑀 < 𝑟
𝑟

𝑟



Rotation Curve, Mass Density, Potential

Disks are not spherical, they are flattened. 

Disk surface density:  Σ(𝑅) = Σ!𝑒)*/,

Integrate to get mass interior:

𝑀 𝑅 = 2𝜋A
!

*
Σ 𝑅 𝑅𝑑𝑟 = 2𝜋Σ!ℎ& 1 − 𝑒)*/, 1 +

𝑅
ℎ

Solve for in-plane potential:
𝜙 𝑅 -.! = −𝜋𝐺Σ!𝑅 𝐼! 𝑦 𝐾! 𝑦 − 𝐼/ 𝑦 𝐾/ 𝑦

where	𝑦 = 𝑟/2ℎ and 𝐼!, 𝐾!, 𝐼/, 𝐾/ are Bessel functions.

Solve for circular velocity:

𝑉(& = 𝑟
𝜕𝜙
𝜕𝑟 = 4𝜋𝐺Σ!ℎ𝑦& 𝐼! 𝑦 𝐾! 𝑦 − 𝐼/ 𝑦 𝐾/ 𝑦

This is the solution for a razor-thin disk. Disks have thickness, 
describe as oblateness 𝑞 = ℎ-/ℎ*

https://en.wikipedia.org/wiki/Bessel_function


BUT THE POINT IS…..

⇐ THIS… 

…IS NOT THIS. ⇓

We need to add an extended halo of “dark matter”: more mass at large
radius boosts the rotational speed of the outer disk. 

(Or we need to change our understanding of gravity….)



Milky Way Rotation: Differential rotation

The rotation curve of the Milky Way (and other galaxies) is not a “solid body” rotation curve (𝑉 𝑅 ∝ 𝑅). This means 
objects at different radii will orbit at different angular speeds:

Circular speed: 𝑉(𝑅) in km/s.

Angular speed: Ω 𝑅 = ⁄𝑉(𝑅) 𝑅 (typically expressed in km/s/kpc)

But note that the units of angular speed are essentially inverse time, so it is basically an orbital frequency.

Orbital time: 𝑇0%1(𝑅) = ⁄2𝜋𝑅 𝑉(𝑅) = ⁄2𝜋 Ω(𝑅)

Since stars at different radii have different angular speeds and orbital times, this introduces shear in the Galactic disk.

Relating gradients: If Ω = ⁄𝑉 𝑅 = 𝑉𝑅)/, then by the product rule for differentiation:

𝑑Ω
𝑑𝑅 =

1
𝑅
𝑑𝑉
𝑑𝑅 −

𝑉
𝑅& =

1
𝑅

𝑑𝑉
𝑑𝑅 −

𝑉
𝑅



Expand the angular velocity curve as a Taylor series: Ω 𝑅 = Ω! 𝑅! + \23
2* *!

(𝑅 − 𝑅!) + …

Milky Way Rotation: Differential rotation and the Oort Constants

For stars near the Sun, we can make linear approximations to solve for expressions describing shear and vorticity of 
stellar velocity field. 
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A similar analysis on the tangential velocities gives: 𝑣6≅ 𝐴𝑑 cos 2𝑙 + 𝐵𝑑  where B = − /
&

\25
2* *!

+ 5!
*!

 

Milky Way Rotation: Differential rotation and the Oort Constants

For stars near the Sun, we can make linear approximations to solve for expressions describing shear and vorticity of 
stellar velocity field. 

The expressions for A and B were first worked out by Jan Oort in the 1920s and are known as the Oort Constants.



Milky Way Rotation: Differential rotation and the Oort Constants

A = −
1
2

3
𝑑𝑉
𝑑𝑅 f*

−
𝑉*
𝑅*

B = −
1
2

3
𝑑𝑉
𝑑𝑅 f*

+
𝑉*
𝑅*

Oort A measures shear, the deviation from rigid rotation. 
In rigid rotation, 𝑉 = 5!

*!
𝑅   so A=0.

Oort B measures vorticity of the local velocity field, the tendency for objects to 
circulate around a position.

They also can be expressed in terms of the velocity curve:

Sun’s Angular Velocity Ω! =
𝑉!
𝑅!

= 𝐴 − 𝐵

Circular Velocity at R0 (i.e., the LSR) 𝑉! = 𝑅!(𝐴 − 𝐵)

Circular Velocity Gradient g
𝑑𝑉
𝑑𝑅 *!

= − 𝐴 + 𝐵

Velocity Dispersion Ellipsoid
−𝐵
𝐴 − 𝐵 =

𝜎5&

𝜎7&

Bovy 17:

A = +15.3 ± 0.4 km/s/kpc
B = −11.9 ± 0.4 km/s/kpc

Note: additional Oort constants C 
and K measure non-axisymmetry.

https://ui.adsabs.harvard.edu/abs/2017MNRAS.468L..63B/abstract


Orbits in Axisymmetric Potentials

In non-point-mass potentials, orbits do not complete a perfect ellipse: 
they are not “closed”. So how do we describe them?

An integral of motion is a quantity that is constant over an orbit:
• Static Potential: Orbital Energy (𝐸 = 0.5𝑣& + 𝜙)
• Spherical Potential: Total Angular Momentum (𝐿 = 𝑟	⨂	𝑣)
• Axisymmetric Potential: 𝐿-, the z-component of L

Look at in-plane orbital energy: 𝐸 = 0.5𝑣& + 𝜙 = 0.5 𝑣%& + 𝑣8& + 	𝜙

Look at angular momentum: 𝐿 = 𝑥𝑣9 − 𝑦𝑣: = 𝑟𝑣8 = 𝐿z

So  𝑣8 =
;
%
 and we can rewrite energy as 𝐸 = 0.5𝑣%& + 0.5

;"

%"
+ 𝜙 𝑟 	 = 0.5𝑣%& +	𝜙<==(𝑟)

where 𝜙<== = 𝜙(𝑟) + 0.5 ;
"

%"
 is called the effective potential -- a combination of the gravitational potential and the 

angular momentum. This turns the problem into a function of r alone.

(𝑣: , 𝑣9)
(𝑣% , 𝑣8)

𝑟

𝑣

𝑥

𝑦



(𝑣: , 𝑣9)
(𝑣% , 𝑣8)

𝑟

𝑣

𝑥

𝑦



The effective potential

At a given E, L, orbits form a 
rosette between percenter (rp) and 
apocenter (ra)

E,
 P

hi

E

Radius

“angular momentum barrier”
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The effective potential
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 P
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E
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At a given E, L, orbits form a 
rosette between percenter (rp) and 
apocenter (ra)

At fixed E, increasing L reduces the 
range of apo and peri

At fixed E, highest L gives circular 
orbits.

Very low L orbits can get close to 
the center.

Raising E gives more radial range to 
orbit.



Orbits in Axisymmetric Potentials

Remember the force acting on a star comes from the potential: 𝐹⃗ = 𝑚𝑎⃗ = −𝑚∇𝜙

Separate the orbital motion into R and z motions:

𝑅̈ = −
𝜕𝜙<==
𝜕𝑅 	 𝑧̈ = −

𝜕𝜙<==
𝜕𝑧 	 𝜙<== = 𝜙 𝑅, 𝑧 +

𝐿-&

2𝑅&

Define 𝑥 ≡ 𝑅 − 𝑅> where 𝑅> is the radius of a circular orbit with angular momentum 𝐿-

If 𝒙	and 𝒛 are small, we can do a Taylor expansion of the effective potential around 𝑥, 𝑧 = 0,0 :

𝜙< = 𝜙<== 𝑅>, 0 +
1
2
𝜕&𝜙<==
𝜕𝑅& 𝑥& +

1
2
𝜕&𝜙<==
𝜕𝑧& 𝑧& +⋯

define κ& = ?"@#$$
?*"

 and 𝜈& = ?"@#$$
?-"

 and we get 𝑥̈ = −κ&𝑥 and 𝑧̈ = −𝜈&𝑧

which are equations of harmonic oscillators with frequency κ and 𝜈.

This is referred to as the epicyclic approximation, for reasons which will become clear soon….  



Look at In-plane radial motion

Rewrite κ using our expression for the effective potential:

κ& = ?"@#$$
?*"

    and   𝜙<=𝒇 = 𝜙 𝑅, 𝑧 + ;%"

&*"
   so we get   κ& = ?"@

?*"
+ B;%"

*&
 

 
We want to solve this in terms of orbital motion, so connect Ω , 𝜙, and 𝑉(:

Ω& =
𝑉(&

𝑅& =
1
𝑅
𝑉(&

𝑅 =
1
𝑅
𝜕𝜙
𝜕𝑅

but we can also connect it to 𝐿-

Ω& =
𝑉(&

𝑅& =
𝑉(&𝑅&

𝑅C =
𝐿-&

𝑅C
So

κ& =
𝜕&𝜙
𝜕𝑅& +

3𝐿-&

𝑅C 	 = 	
𝜕(𝑅Ω&)
𝜕𝑅 +

3𝐿-&

𝑅C 	 = 	𝑅
𝜕Ω&

𝜕𝑅 + Ω& + 3Ω& 	= 𝑅
𝜕Ω&

𝜕𝑅 + 4Ω&

And finally bringing in Oort Constants, κ& = −4𝐵(𝐴 − 𝐵)

Remember, these 
variables all depend on 
radius, they are not 
constants!

𝑉! = 𝑉! 𝑅
𝜙 = 𝜙 𝑅
Ω = Ω(𝑅)

𝜅 is called the 
epicyclic frequency

You	will	show	this	in	HW	#3



In-plane Motion: 2D oscillations

Now let’s look at the 2D motion in the plane. We have 𝑥̈ = −κ&𝑥 which has some solution

𝑥 𝑡 = 𝑋 cos(𝜅𝑡 + 𝜉)

Look at azimuthal motion. Let 𝜓 be the angular coordinate along the orbit, so 𝜓̇ is the angular velocity:

𝜓̇ = ;%
*"
= ;%

*'"
1 + :

*'

)&
 

where I’ve simply substituted in 𝑅 = 𝑅> + 𝑥 and then done some algebra.

If 𝑥/𝑅> ≪ 1, I can do another expansion to get

𝜓̇ ≅ Ω> 1 −
2𝑥
𝑅>

Now substitute x and be explicit about the derivative

𝜓̇ =
𝜕𝜓
𝜕𝑡 = Ω> 1 −

2𝑋
𝑅>

cos(𝜅𝑡 + 𝜉)

And now integrate

𝜓 𝑡 = Ω>𝑡 −
2Ω>𝑋
𝜅𝑅>

sin 𝜅𝑡 + 𝜉 + 𝜓!

Remember, 𝑅" is the 
radius of the circular 
orbit we are tweaking!

𝜉 is just phase term, 
setting the starting point 
of the oscillation.

𝜓# is just another phase 
term that sets the 
starting point of the 
orbit.

𝑥 = 𝑅 − 𝑅"



Finally: Epicycles

Let’s put an (x,y) cartesian coordinate system centered on (𝑅>, Ω>𝑡+ 𝜓!). 

Since 𝜓 𝑡 = Ω>𝑡 −
&3'D
E*'

sin 𝜅𝑡 + 𝜉 + 𝜓! we have

𝑥 𝑡 = 	 𝑋 cos(𝜅𝑡 + 𝜉)	
𝑦 𝑡 = −𝑌 sin 𝜅𝑡 + 𝜉 , where 𝑌 ≡ &3'D

E*'

The star moves on an ellipse around Rg, as Rg moves around the galaxy on a circular orbit. The motion is described 
as an epicycle with a guiding center Rg! The frequency 𝜅 is called the epicyclic frequency.

Notes:
• The ellipse has an axis ratio of  𝑋/𝑌 = 	𝜅/(2Ω>)
• For typical galactic potentials 𝑌 > 𝑋, so the ellipse is elongated tangentially
• Epicycles are retrograde. Why?

• Conservation of angular momentum.
• When the star is further out from the guiding center it moves more slowly and lags the guiding center.
• When the star is closer in, it moves more quickly and leads the guiding center.

This is simply the equation of an ellipse!



Epicycles around a point source

Think of Keplerian motion:   𝑉F 	~	𝑅)!.H,  Ω = ⁄𝑉( 𝑅	~	 𝑅)/.H, 

Epicyclic frequency:   𝜅& = 𝑅 ?3"

?*
+ 4Ω& = R ?(*())

?*
+ 4Ω& = R −3𝑅)C + 4𝑅)B = 𝑅)B

So:  𝜅	~	𝑅)/.H	~	Ω, and the ratio of the ellipse is D
K
= E

&3'
= /

&
 

What did Ptolemy get wrong?



Clarification on the epicyclic approximation:

The epicycle:

• It is an epicyclic loop only in the rotating frame of reference.

• In any reasonable potential, the epicyclic frequency (𝜅) is comparable to the orbital frequency (Ω)  to 
within a factor of a few. 

• So orbits do not gyrate wildly, they just deviate slightly from circular. 

Why is the epicycle retrograde compared to the guiding center mortion?

• Momentum (𝐿 = 𝑟𝑣8) is conserved on the orbit.
• When the star is inside 𝑅> it has a higher angular velocity, so it moves ahead of the guiding center. 
• As it moves ahead, it is moving faster than circular, so it also drifts outwards.
• As it drifts outwards it also slows down in 𝑣8  to keep angular momentum conserved.
• As it moves beyond 𝑅> and slows down in 𝑣8  it lags the guiding center.
• Since it now is moving slower than circular, it starts to drift back inwards.
• and the cycle repeats, with the epicycle being retrograde compare to the guiding center motion.


