

Milky Way Rotation Speed

Important: for this discussion, V refers to the rotation speed, not the speed relative to the LSR. And also assume stars are on circular orbits.

Estimate of $\mathrm{V}\left(\mathrm{R}_{0}\right)$ from kinematics of globular clusters and halo stars: ~ 200 km / s. But how can we map this as a function of radius?

Think about the observed radial velocity of a star, which is a combination of our motion and its motion:

$$
v_{r}=V_{*} \cos \alpha-V_{o} \sin \ell
$$

If we define the angular velocity as $\Omega=V / R$ and use the law of sines, this turns into

$$
v_{r}=\left(\Omega_{*}-\Omega_{0}\right) R_{0} \sin \ell
$$

We can make similar arguments about the tangential velocity

$$
v_{T}=\left(\Omega_{*}-\Omega_{0}\right) R_{0} \cos \ell-\Omega_{*} d
$$

Milky Way Rotation Speed

Focus now on radial velocities: $v_{r}=\left(\Omega_{*}-\Omega_{0}\right) R_{0} \sin \ell$

Nominally, since $\Omega=V / R$, we need to know distances to get R's.
But notice that along that line of sight, the maximum velocity measured will be at the tangent point T . At that point $d=R_{0} \cos \ell$.

We also need to know $\Omega_{0} \equiv V_{0} / R_{0}$. Can get this by knowing R_{0} and V_{0}, or (now) by measuring the proper motion of the Sgr A*, the radio source at the Galactic Center.

Sgr A* appears to move because we are moving. Its angular motion on the sky is our angular motion through the Galaxy.
$\Omega_{0}=29.5 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$
Reid \& Brunthaler 04

Milky Way Rotation Speed

Want to map velocities of objects in the disk moving on circular orbits. What kinds of objects are these? gas clouds!
21-cm HI emission: no extinction at radio wavelengths. Map the HI velocities as a function of Galactic longitude, look for maximum velocity. Imagine gas clouds strung out along some line of sight, and the velocities you measure:

The velocity of cloud C should be the circular speed at $R_{\min }=R_{0} \sin \ell$.
Works well inside the solar circle: $R<R_{0}$. Beyond that, there is no tangent point and actual distances are needed. Use other tracers of young stars: Cepheids, HII regions, etc.

Milky Way Rotation Curve

IAU "standard":
$\mathrm{R}_{0}=8.5 \mathrm{kpc}$ $V_{c}\left(R_{0}\right)=220 \mathrm{~km} / \mathrm{s}$
(but these numbers have been updated....)
Gaia Cepheid data
plus
updated R_{0}
$V_{c}\left(R_{0}\right)=234 \mathrm{~km} / \mathrm{s}$

Rotation Curve, Mass Density, Potential (a review of PHYS 1)

A spherical density distribution $\rho(r)$ leads to a interior mass

$$
M(<r)=4 \pi \int_{0}^{r} \rho(r) r^{2} d r
$$

which leads to a gravitational potential given by

$$
\phi(r)=-4 \pi G\left[\frac{1}{r} \int_{0}^{r} r^{2} \rho(r) d r+\int_{r}^{\infty} r \rho(r) d r\right]
$$

The force felt by a particle at distance r is given by

$$
\vec{F}=m \vec{a}=-m \nabla \phi \hat{r}=-\frac{G M(<r) m}{r^{2}} \hat{r}
$$

which leads to a circular speed given by

$$
V_{c}^{2}=r \frac{\partial \phi}{\partial r}=\frac{G M(<r)}{r}
$$

Rotation Curve, Mass Density, Potential

Disks are not spherical, they are flattened.
Disk surface density: $\Sigma(R)=\Sigma_{0} e^{-R / h}$
Integrate to get mass interior:

$$
M(R)=2 \pi \int_{0}^{R} \Sigma(R) R d r=2 \pi \Sigma_{0} h^{2}\left(1-e^{-R / h}\left(1+\frac{R}{h}\right)\right)
$$

Solve for in-plane potential:

$$
\phi(R)_{z=0}=-\pi G \Sigma_{0} R\left(I_{0}(y) K_{0}(y)-I_{1}(y) K_{1}(y)\right)
$$

where $y=r / 2 h$ and $I_{0}, K_{0}, I_{1}, K_{1}$ are Bessel functions.
Solve for circular velocity:

$$
V_{c}^{2}=r \frac{\partial \phi}{\partial r}=4 \pi G \Sigma_{0} h y^{2}\left(I_{0}(y) K_{0}(y)-I_{1}(y) K_{1}(y)\right)
$$

This is the solution for a razor-thin disk. Disks have thickness, describe as oblateness $q=h_{z} / h_{R}$

Fig. 17.- Rotation speed of an exponential disk with central mass surface density of 100 $\mathcal{M}_{\odot} \mathrm{pc}^{-2}$ and oblateness $0.05<q<0.25$ versus radius normalized by scale-length, compared to a spherical density distribution with the same enclosed mass. Bottom panel shows the ratio of spherical to disk velocities. Dashed and solid lines show disks truncated at $\mathrm{R} / \mathrm{h}_{R}=4$ and 10 , respectively. The radial range where these disks have peak velocities is shaded in gray.

BUT THE POINT IS.....

We need to add an extended halo of "dark matter": more mass at large radius boosts the rotational speed of the outer disk.
(Or we need to change our understanding of gravity....)
\Leftarrow THIS...
...IS NOT THIS. \Downarrow

Fig. 17.- Rotation speed of an exponential disk with central mass surface density of 100 $\mathcal{M}_{\odot} \mathrm{pc}^{-2}$ and oblateness $0.05<q<0.25$ versus radius normalized by scale-length, compared to a spherical density distribution with the same enclosed mass. Bottom panel shows the ratio of spherical to disk velocities. Dashed and solid lines show disks truncated at $\mathrm{R} / \mathrm{h}_{R}=4$ and 10 , respectively. The radial range where these disks have peak velocities is shaded in gray.

Milky Way Rotation: Differential rotation

The rotation curve of the Milky Way (and other galaxies) is not a "solid body" rotation curve ($V(R) \propto R$). This means objects at different radii will orbit at different angular speeds:

Circular speed: $V(R)$ in km / s.

Angular speed: $\Omega(R)=V(R) / R$ (typically expressed in $\mathrm{km} / \mathrm{s} / \mathrm{kpc}$)
But note that the units of angular speed are essentially inverse time, so it is basically an orbital frequency.

Orbital time: $T_{\text {orb }}(R)=2 \pi R / V(R)=2 \pi / \Omega(R)$
Since stars at different radii have different angular speeds and orbital times, this introduces shear in the Galactic disk.

Relating gradients: If $\Omega=V / R=V R^{-1}$, then by the product rule for differentiation:

$$
\frac{d \Omega}{d R}=\frac{1}{R} \frac{d V}{d R}-\frac{V}{R^{2}}=\frac{1}{R}\left(\frac{d V}{d R}-\frac{V}{R}\right)
$$

Milky Way Rotation: Differential rotation and the Oort Constants

For stars near the Sun, we can make linear approximations to solve for expressions describing shear and vorticity of stellar velocity field.

Expand the angular velocity curve as a Taylor series: $\Omega(R)=\Omega_{0}\left(R_{0}\right)+\left.\frac{d \Omega}{d R}\right|_{R_{0}}\left(R-R_{0}\right)+\ldots$

$$
\text { So to first order: } \quad \Omega(R)-\left.\Omega_{0}\left(R_{0}\right) \cong \frac{d \Omega}{d R}\right|_{R_{0}}\left(R-R_{0}\right)
$$

Take the expression for observed radial velocity: $\quad v_{r}=\left(\Omega_{*}-\Omega_{0}\right) R_{0} \sin l$
insert expression for $\Omega(R)-\Omega_{0}\left(R_{0}\right)$ and expand $\frac{d \Omega}{d R}: \quad v_{r} \cong\left[\left.\frac{d V}{d R}\right|_{R_{0}}-\frac{V_{0}}{R_{0}}\right]\left(R-R_{0}\right) \sin l$
If $d \ll R_{0}$ we can use the small angle approximation: $\left(R-R_{0}\right) \approx-d \cos l$
And use a trig identity $(2 \cos l \sin l=\sin 2 l)$ to get to: $\quad v_{r} \cong A d \sin 2 l \quad$ where $A=-\frac{1}{2}\left[\left.\frac{d V}{d R}\right|_{R_{0}}-\frac{V_{0}}{R_{0}}\right]$
A similar analysis on the tangential velocities gives: $\quad v_{T} \cong A d \cos 2 l+B d$ where $\mathrm{B}=-\frac{1}{2}\left[\left.\frac{d V}{d R}\right|_{R_{0}}+\frac{V_{0}}{R_{0}}\right]$

The expressions for A and B were first worked out by Jan Oort in the 1920s and are known as the Oort Constants.

Milky Way Rotation: Differential rotation and the Oort Constants

Oort A measures shear, the deviation from rigid rotation.
In rigid rotation, $V=\left(\frac{V_{0}}{R_{0}}\right) R$ so $\mathrm{A}=0$.

Oort B measures vorticity of the local velocity field, the tendency for objects to circulate around a position.

$$
A=-\frac{1}{2}\left[\left.\frac{d V}{d R}\right|_{R_{0}}-\frac{V_{0}}{R_{0}}\right]
$$

$$
\mathrm{B}=-\frac{1}{2}\left[\left.\frac{d V}{d R}\right|_{R_{0}}+\frac{V_{0}}{R_{0}}\right]
$$

They also can be expressed in terms of the velocity curve:

Sun's Angular Velocity
Circular Velocity at R_{0} (i.e., the LSR)

$$
\begin{gathered}
\Omega_{0}=\frac{V_{0}}{R_{0}}=A-B \\
V_{0}=R_{0}(A-B) \\
\left.\frac{d V}{d R}\right|_{R_{0}}=-(A+B) \\
\frac{-B}{A-B}=\frac{\sigma_{V}^{2}}{\sigma_{U}^{2}}
\end{gathered}
$$

Bovy 17:

$\mathrm{A}=+15.3 \pm 0.4 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$
$B=-11.9 \pm 0.4 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$

Note: additional Oort constants C and K measure non-axisymmetry.

Orbits in Axisymmetric Potentials

In non-point-mass potentials, orbits do not complete a perfect ellipse: they are not "closed". So how do we describe them?

An integral of motion is a quantity that is constant over an orbit:

- Static Potential: Orbital Energy $\left(E=0.5 v^{2}+\phi\right)$
- Spherical Potential: Total Angular Momentum $(\vec{L}=\vec{r} \otimes \vec{v})$
- Axisymmetric Potential: L_{z}, the z-component of L

Look at in-plane orbital energy: $E=0.5 v^{2}+\phi=0.5\left(v_{r}^{2}+v_{\theta}^{2}\right)+\phi$

Look at angular momentum: $|\vec{L}|=x v_{y}-y v_{x}=r v_{\theta}=L_{z}$
$\left(v_{x}, v_{y}\right)$
$\left(v_{r}, v_{\theta}\right)$

So $v_{\theta}=\frac{L}{r}$ and we can rewrite energy as $E=0.5 v_{r}^{2}+0.5 \frac{L^{2}}{r^{2}}+\phi(r)=0.5 v_{r}^{2}+\phi_{e f f}(r)$
where $\phi_{e f f}=\phi(r)+0.5 \frac{L^{2}}{r^{2}}$ is called the effective potential -- a combination of the gravitational potential and the angular momentum. This turns the problem into a function of r alone.

The effective potential

At a given E, L, orbits form a rosette between percenter (r_{p}) and apocenter (r_{a})

Radius

The effective potential

At a given E, L, orbits form a rosette between percenter $\left(r_{p}\right)$ and apocenter (r_{a})

At fixed E, increasing L reduces the range of apo and peri

Radius

The effective potential

At a given E, L, orbits form a rosette between percenter $\left(r_{p}\right)$ and apocenter (r_{a})

At fixed E, increasing L reduces the range of apo and peri

At fixed E, highest L gives circular orbits.

Radius

The effective potential

At a given E, L, orbits form a rosette between percenter $\left(r_{p}\right)$ and apocenter $\left(r_{a}\right)$

At fixed E, increasing L reduces the range of apo and peri

At fixed E, highest L gives circular orbits.

Very low L orbits can get close to the center.

Radius

The effective potential

At a given E, L, orbits form a rosette between percenter $\left(r_{p}\right)$ and apocenter (r_{a})

At fixed E, increasing L reduces the range of apo and peri

At fixed E, highest L gives circular orbits.

Very low L orbits can get close to the center.

Raising E gives more radial range to orbit.

Orbits in Axisymmetric Potentials

Remember the force acting on a star comes from the potential: $\vec{F}=m \vec{a}=-m \nabla \phi$
Separate the orbital motion into R and z motions:

$$
\ddot{R}=-\frac{\partial \phi_{e f f}}{\partial R} \quad \ddot{z}=-\frac{\partial \phi_{e f f}}{\partial z} \quad \phi_{e f f}=\phi(R, z)+\frac{L_{z}^{2}}{2 R^{2}}
$$

Define $x \equiv R-R_{g}$ where R_{g} is the radius of a circular orbit with angular momentum L_{z}
If \boldsymbol{x} and \boldsymbol{z} are small, we can do a Taylor expansion of the effective potential around $(x, z)=(0,0)$:

$$
\phi_{e}=\phi_{e f f}\left(R_{g}, 0\right)+\frac{1}{2}\left(\frac{\partial^{2} \phi_{e f f}}{\partial R^{2}}\right) x^{2}+\frac{1}{2}\left(\frac{\partial^{2} \phi_{e f f}}{\partial z^{2}}\right) z^{2}+\cdots
$$

define $\kappa^{2}=\left(\frac{\partial^{2} \phi_{e f f}}{\partial R^{2}}\right)$ and $v^{2}=\left(\frac{\partial^{2} \phi_{e f f}}{\partial z^{2}}\right)$ and we get $\ddot{x}=-\kappa^{2} x$ and $\ddot{z}=-v^{2} z$
which are equations of harmonic oscillators with frequency κ and v.
This is referred to as the epicyclic approximation, for reasons which will become clear soon....

Look at In-plane radial motion

Rewrite κ using our expression for the effective potential:

$\kappa^{2}=\left(\frac{\partial^{2} \phi_{e f f}}{\partial R^{2}}\right)$ and $\phi_{e f f}=\phi(R, z)+\frac{L_{Z}^{2}}{2 R^{2}}$ so we get $\kappa^{2}=\left(\frac{\partial^{2} \phi}{\partial R^{2}}\right)+\frac{3 L_{z}^{2}}{R^{4}}$
We want to solve this in terms of orbital motion, so connect Ω, ϕ, and V_{c} :

$$
\Omega^{2}=\frac{V_{c}^{2}}{R^{2}}=\frac{1}{R} \frac{V_{c}^{2}}{R}=\frac{1}{R} \frac{\partial \phi}{\partial R}
$$

but we can also connect it to L_{z}

$$
\Omega^{2}=\frac{V_{c}^{2}}{R^{2}}=\frac{V_{c}^{2} R^{2}}{R^{4}}=\frac{L_{z}^{2}}{R^{4}}
$$

So

$$
\kappa^{2}=\left(\frac{\partial^{2} \phi}{\partial R^{2}}\right)+\frac{3 L_{z}^{2}}{R^{4}}=\frac{\partial\left(R \Omega^{2}\right)}{\partial R}+\frac{3 L_{z}^{2}}{R^{4}}=R \frac{\partial \Omega^{2}}{\partial R}+\Omega^{2}+3 \Omega^{2}=R \frac{\partial \Omega^{2}}{\partial R}+4 \Omega^{2}
$$

And finally bringing in Oort Constants, $\kappa^{2}=-4 B(A-B)$

In-plane Motion: 2D oscillations

Now let's look at the 2D motion in the plane. We have $\ddot{x}=-\kappa^{2} x$ which has some solution

$$
x(t)=X \cos (\kappa t+\xi)
$$

Look at azimuthal motion. Let ψ be the angular coordinate along the orbit, so $\dot{\psi}$ is the angular velocity:

$$
\dot{\psi}=\frac{L_{z}}{R^{2}}=\frac{L_{z}}{R_{g}^{2}}\left(1+\frac{x}{R_{g}}\right)^{-2}
$$

where I've simply substituted in $R=R_{g}+x$ and then done some algebra.

Remember, R_{g} is the
radius of the circular
orbit we are tweaking!

If $x / R_{g} \ll 1$, I can do another expansion to get

$$
\dot{\psi} \cong \Omega_{g}\left(1-\frac{2 x}{R_{g}}\right)
$$

Now substitute x and be explicit about the derivative

$$
\dot{\psi}=\frac{\partial \psi}{\partial t}=\Omega_{g}\left(1-\frac{2 X}{R_{g}} \cos (\kappa t+\xi)\right)
$$

And now integrate

$$
\psi(t)=\Omega_{g} t-\frac{2 \Omega_{g} X}{\kappa R_{g}} \sin (\kappa t+\xi)+\psi_{0}
$$

