Thin and Thick Disk

Scale height can be better fitted as a combination of two exponentials:
e Thindisk: h, = 300 pc
* Thick disk: h, = 1 kpc

Gilmore & Reid 1983 2MASS near-IR map
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https://ui.adsabs.harvard.edu/abs/1983MNRAS.202.1025G/abstract

Thick Disk

The thick disk is thicker but more centrally concentrated
than the thin disk.

It is kinematically hotter than the thin disk.

It is older and more metal-poor than the thin disk.

| ThinDisk Thick Disk

Scale height (h,)
Scale length (hg)

(oy, oy, oW, Vg)
Kinematics

300 pc 1 kpc
3-4 kpc 2 kpc
= (30, 20, 20, 15) km/s = (60, 40, 40, 30) km/s

Stellar pops Mix of stellar ages,

more metal-rich stars

Old stars, somewhat
more metal-poor

Total luminosity of thick disk = 10% that of the thin disk

Edvardsson+ 93
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Fig. 16a and b. Stellar velocities perpendicular to the galactic plane,
W, vs iron abundance a and age b, 79 is the age in 10’ years


https://ui.adsabs.harvard.edu/abs/1993A%26A...275..101E/abstract

Metallicity structure of the thin and thick disk
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Figure 4. Stellar distribution of stars in the [a/Fe| vs. [Fe/H] plane as a function of R and |z|. The typical uncertainty in the abundances is shown as a function of
metallicity across the bottom of each panel. The size of individual points is inversely related to the density at that location, to avoid saturation. Top: observed [o/Fe] vs.
[Fe/H] distribution for stars with 1.0 < |z| < 2.0 kpc. Middle: observed [a/Fe] vs. [Fe/H] distribution for stars with 0.5 < |z| < 1.0 kpc. Bottom: observed [a/Fe]| vs.
[Fe/H] distribution for stars with 0.0 < |z] < 0.5 kpc. The gray line on each panel is the same, showing the similarity of the shape of the high-[a/Fe| sequence with R.
The extended solar-|a/Fe| sequence observed in the solar neighborhood is not present in the inner disk (R < 5 kpc), where a single sequence starting at high [«/Fe] and
low metallicity and ending at solar [a/Fe] and high metallicity fits our observations. In the outer disk (R > 11 kpc), there are very few high-[«a/Fe] stars.


https://ui.adsabs.harvard.edu/abs/2015ApJ...808..132H/abstract

Metallicity structure of the thin and thick disk

Look at radial metallicity trends for stars in the disk plane.

Remember how [a/Fe] and [Fe/H] track star
formation and enrichment history.
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Metallicity structure of the thin and thick disk

Now compare to stars over the same radial range, but higher up in height (z).

Inner parts look very different — lower metallicity and strong a-enhancement. But only the inner parts. Outer parts still
look “normal”. This is the signature of the thick disk -- built up earlier and faster than the thin disk, but also not as radially
extended.
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This argues that the thick disk is not just scattered thin disk stars, or else the thick disk would have the same metallicity
pattern as the thin disk.



Metallicity structure of the thin and thick disk
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At even higher distances from the plane, inner regions are almost all thick disk. Outer regions still look similar at all
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Metallicity structure of the thin and thick disk
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Figure 4. Stellar distribution of stars in the [a/Fe| vs. [Fe/H] plane as a function of R and |z|. The typical uncertainty in the abundances is shown as a function of
metallicity across the bottom of each panel. The size of individual points is inversely related to the density at that location, to avoid saturation. Top: observed [o/Fe] vs.
[Fe/H] distribution for stars with 1.0 < |z| < 2.0 kpc. Middle: observed [a/Fe] vs. [Fe/H] distribution for stars with 0.5 < |z| < 1.0 kpc. Bottom: observed [a/Fe]| vs.
[Fe/H] distribution for stars with 0.0 < |z] < 0.5 kpc. The gray line on each panel is the same, showing the similarity of the shape of the high-[a/Fe| sequence with R.
The extended solar-|a/Fe| sequence observed in the solar neighborhood is not present in the inner disk (R < 5 kpc), where a single sequence starting at high [«/Fe] and
low metallicity and ending at solar [a/Fe] and high metallicity fits our observations. In the outer disk (R > 11 kpc), there are very few high-[«a/Fe] stars.


https://ui.adsabs.harvard.edu/abs/2015ApJ...808..132H/abstract

Milky Way Disk: Inferences on Formation and Evolution
Thin disk

* Formed through continuous, on-going star formation: Mix of stellar ages, smooth metallicity distribution,
solar [oi/Fe] ratios

* Hints of “inside-out” formation: metallicity gradient (maybe also the age-metallicity relationship?) shows
inner regions more chemically evolved, maybe formed a bit faster than outskirts

e Dynamically calm process (low velocity dispersion)

Thick disk
* Formed earlier (lower metallicity) and faster (higher [a/Fe] ratios) than the thin disk.
* More centrally concentrated process (shorter radial scale length)

 More “dynamically active” process (higher velocity dispersion)



Astronomy lingo: in terms of dynamics, “cold” means
ordered motion with low velocity dispersion, while “hot”
means disordered motion with high velocity dispersion.
Disks are “cold”, bulges and ellipticals are “hot”.

Thick Disk Formation Scenarios | : Early Satellite Accretion

Early in the Milky Way’s history, a LMC-ish satellite fell in and heated (scattered) existing disk stars. = thick disk

Afterwards, the gas re-settles into the disk and continues forming stars. = thin disk

Mihos & Hernquist 1995




Thick Disk Formation Scenarios | : Early Satellite Accretion

As the satellite falls in, it stirs up the orbits of
stars and increases their velocity dispersion
(random motion).
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https://ui.adsabs.harvard.edu/abs/1996ApJ...460..121W/abstract

Thick Disk Formation Scenarios Il : Turbulent Disk Formation

Simulated galaxy disk at current time... (Brook+ 04)
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https://ui.adsabs.harvard.edu/abs/2004ApJ...612..894B/abstract
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The Distance to the Galactic Center

1920: Curtis Shapley uses spatial
distribution of globular clusters,
finds that they are centered on a
different. spot in the Milky Way.

Correctly reasons that globulars
were centered on the location of
the Galaxy’s center, but
incorrectly placed it 18 kpc away.

Why did he get it wrong?

Shapley’s Globular Cluster Distribution
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The Distance to the Galactic Center

Modern view of globular cluster distances
and other tracers gives R = 8 — 8.5 kpc.

Shapley over-estimated the distance to the
globulars because he didn’t account for
dust. Dust makes the clusters look dimmer,

so Shapley thought they were further away.
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The Distance to the Galactic Center

Geometric distance:

Infrared interferometry follows the proper motion
of stars and gas clouds orbiting the black hole at
the Galactic center.

Orbits are Keplerian (BH is a point mass).

We can measure the stars orbital proper motion.

Keck/UCLA Galactic
Center Group

1995.5




The Distance to the Galactic Center

Geometric distance:

Infrared spectroscopy gives
velocity of the objects as
well.

Velocity and proper motion
connected by distance.
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(that’s a 0.3% uncertainty!!!)


https://ui.adsabs.harvard.edu/abs/2019arXiv190405721A/abstract



