Thermal emission from dust Dust absorbs radiation from stars and AGN, heats up, reradiates **blackbody emission** in the far infrared. Far-IR emission traces starburst/AGN activity - Elliptical: very little dust /star formation - M101: normal spiral galaxy - **Starburst:** High star formation rates - **ULIRG** (ultra-luminous infrared galaxy): dust heated by intense starburst and/or AGN. ## Thermal emission from dust Dust grains also produce broad **emission lines** in the mid-IR. **PAH emission**: "Polycyclic Aromatic Hydrocarbons" This emission traces warm dust in the spiral arms and nucleus. #### PAH emission in M51 Hubble & Webb Webb / Infrared Hubble / Optical #### **Dust Extinction** Imagine light going through a slab of dust particles Define optical depth: $\tau = N\sigma L$ then $$I_{out} = I_{in}e^{-\tau}$$ #### Working out the extinction in magnitudes The light is extincted by a factor $$I_{out}/I_{in} = e^{-\tau}$$ Converting this to magnitudes: $$m_{out} - m_{in} = -2.5 \log(e^{-\tau})$$ = -2.5(-\tau) \log e = 1.086\tau We define the extinction term in magnitudes as $$A = 1.086\tau$$ so $$m_{out} - m_{in} = A$$ In other words, the true apparent magnitude (if there had been no dust) is related to the observed apparent magnitude by $$m_{true} = m_{obs} - A$$ ## Reddening and Extinction Dust extincts more at bluer wavelengths, so it also reddens the light. Define redding as: More reddening, more extinction $$A = R \times E(B - V)$$ # **Spatial Distribution of ISM in Spiral Galaxies** Atomic gas (HI) is generally quite extended, outer regions are HI gasrich. Molecular gas more centrally concentrated. Ionized gas (i.e., star formation) follows molecular gas. Warm dust follows star formation. #### **Hot gas: X-rays** Gas heated to $10^5 - 10^6$ K by supernovae, stellar winds, shocks. Highly ionized, so no emission lines in the optical/UV. Largely radiates via **Bremstrahhlung** or **free-free** radiation from charged particles (e⁻). Connect thermal energy and photon energy: kT ≈ hv, gives emission in X-ray. Some line emission from highly ionized atoms (typically Fe). #### Bremstrahhlug / free-free emission ## X-ray Emission **Smooth diffuse emission**: free-free emission from hot gas **Point sources**: accreting neutron star or black hole (not free-free emission!) ## **Optical Starlight** Hot gas in spiral galaxies (M101) #### X-ray Emission **Optical Starlight** **Smooth diffuse emission**: free-free emission from hot gas **Point sources**: accreting neutron star or black hole (not free-free emission!) **Far ultraviolet** (\approx 1500Å) traces emission from massive young stars with ages \lesssim 100 Myr. Total FUV luminosity \Rightarrow Star Formation Rate on this timescale. But ultraviolet light is very sensitive to dust extinction. Hα luminosity traces emission from massive young stars with ages \lesssim 10 Myr (hot enough to ionize H). UV light ($\lambda < 912 \text{ Å}$) ionizes hydrogen gas; when it recombines it emits Hα. Total Hα luminosity \Rightarrow Star Formation Rate on this timescale. Less sensitive to dust extinction (redder wavelength). Mid Infrared luminosity traces *line emission* from warm dust heated by young stars. Total MIR luminosity ⇒ Star Formation Rate. No dust extinction at these wavelengths multi- λ image red = 24 μ m warm dust Far infrared luminosity traces blackbody (continuum) emission from dust heated by young stars. Total FIR luminosity ⇒ Star Formation Rate. No dust extinction at these wavelengths. 100 μ m image red = bright **Radio continuum,** traces free-free emission from electrons in ionized HII regions Total 1.4 Ghz luminosity \Rightarrow Star Formation Rate. No extinction, but other sources can contribute to radio continuum. Wu+08 more infrared emission from dust heated by young stars