Luminosity function: number of galaxies (per unit volume) in a luminosity range $L \Rightarrow L + dL$

Common parameterization is the Schechter Function: $\Phi(L)dL = \Phi_* \left(\frac{L}{L}\right)^{\circ}$

 Φ_* : overall density (units = #/Mpc³)

L_{*}: characteristic luminosity, the "knee" of the luminosity function

 α : faint end power law slope

We usually work in magnitudes, looking at the number in an absolute magnitude bin $M \Rightarrow M + dM$

The Schechter LF looks different expressed in magnitudes ($\Phi(M)$ dM) rather than luminosity ($\Phi(L)$ dL)

Note: $\alpha = -1$ is referred to as "flat" because of its shape in magnitude plots, not luminosity plots.

$$ce M = -2.5 log L + C,$$

s means
$$dM \sim \frac{dL}{L}$$

so a magnitude bin is a fractional luminosity bin.

sin this

Luminosity function depends on many things, including filter choice and galaxy color....

magnitudes depend on the assumed Hubble constant. We define $h = H_0/100$, and can then scale the magnitude to any Hubble constant we want.....

Luminosity function depends on many things, including filter choice and galaxy color....

...and a very strong dependence on galaxy type and environment

These are schematic LFs, not real

100Intermediate Mass Cluster **Massive Cluster** Coma (10/13/2/0/75)Virgo (6/9/25/15/45) 10 dЕ dIrrS0Number Density 100 Low Mass Group **Isolated Galaxies** Groups (3/6/62/26/3) Extreme Field (0/0/50/50/0)dIrr 10 dIrrSp SpđE bright 22 $_{\rm faint}$ -14-22 -20-18 -16-20-18-16 _{faint} -14 bright Absolute Magnitude

Inside big galaxy clusters:

- E/S0 dominate
- faint end mostly red things

In groups and field:

- Spirals dominate
- faint end mostly blue things

E = EllipticaldE = dwarf ellipticalS0 = S0dIrr = dwarf irregularSp = Spiral

Galaxies: Morphology-Density Relationship

In the local universe, the fraction of galaxy types is a strong function of local environment.

Spirals/Irregulars dominate the in the field environment.

SO's and E's dominate in galaxy clusters.

Projected Number Density of Galaxies log(# per Mpc²)

Galaxy Structure: Surface Brightness Profiles

Remember, surface brightness is intrinsic, does not depend on distance:

Surface Brightness [μ in mags/arcsec²] \Rightarrow Flux Density on Sky [I in erg/s/cm²/arcsec²] \Rightarrow Luminosity Density in Galaxy [Σ in L_o/pc²]

Galaxy Disks: roughly exponential with radius:

Galaxy Structure: Surface Brightness Profiles

Remember, surface brightness is intrinsic, does not depend on distance:

Surface Brightness [μ in mags/arcsec²] \Rightarrow Flux Density on Sky [I in erg/s/cm²/arcsec²] \Rightarrow Luminosity Density in Galaxy [Σ in L_o/pc²]

Ellipticals and Spiral Bulges:

classically, a de Vaucouleur "r-to-the-quarter" law:

$$I(r) = I_e e^{-7.669[(r/r_e)^{1/4} - 1]}$$

or in mag/arcsec²:

$$\mu(r) = \mu_e + 8.3265 [(r/r_e)^{1/4} - 1]$$
 this will be straight line

against r^{1/4}.

Where

r_e : effective or "half-light" radius, contains half the total light

 μ_e : surface brightness *at* the effective radius

Galaxy Structure: Surface Brightness Profiles

Most spiral galaxies are some **combination** of disk and bulge. Can fit the components separately and arrive at a bulge:disk or bulge:total luminosity ratio ("B/D" or "B/T"):

Figure 6. Logarithm of the *B*-band, bulge-to-disc flux ratio as a function of galaxy type (see Table 5, column 7). The dashed line traces the *B*-band values from Simien & de Vaucouleurs (1986).

Graham & Worley 08

