Hubble Sequence ("The Tuning Fork"): The most basic of classification schemes: visual morphology.

Ellipticals: EN $N = 10 \left(1 - \frac{b}{a}\right)$

SO ("Lenticulars") intermediate type, disky but smooth **Spirals**: Sa,Sb,Sc tightness of spiral prominence of bulge **Barred Spirals**: SBa, SBb, SBc presence of central bar otherwise like Spiral

Hubble Sequence ("The Tuning Fork"): The most basic of classification schemes: visual morphology.

Extensions (de Vaucouleur)

Sd (diffuse spiral)

Sm (irregular spiral)

Irr (very irregular)

Ellipticals: EN $N = 10 \left(1 - \frac{b}{a}\right)$

SO ("Lenticulars") transitional type disky but smooth **Spirals**: Sa,Sb,Sc tightness of spiral prominence of bulge

Barred Spirals: SBa, SBb, SBc presence of central bar otherwise like Spiral

Hubble Sequence ("The Tuning Fork"): The most basic of classification schemes: visual morphology.

Extensions (de Vaucouleur)

Sd (diffuse spiral)

Sm (irregular spiral)

Irr (very irregular)

Many, many other classification schemes exist:

Morphology, colors, bulge:disk ratio, spectral properties, structural properties, star forming properties, luminosity classes, kinematic properties, etc, etc.

Classifications for MESSIER 101

			1 of 2 (1 - 100 of 132)
Domain	Published Classification	Refcode	NED Homogenized Classification
	-		
Lummosity Olass	0.0	10011100.0.0000004	
Luminosity Class	Sc(s) I	1981RSAC0000S	LCI
Galaxy Morphology	SAB(rs)cd	1991RC3.9.C0000d	SAB(rs)cd
Galaxy Morphology	Sc(s)	1981RSAC0000S	S(s)c
Galaxy Morphology	WR	1999A&AS13635S	Wolf-Rayet Galaxy
Galaxy Morphology	Sc	1973UGCC0000N	Sc
Galaxy Morphology	spiral with one heavy arm	1966ApJS141A	spiral with one heavy arm
Galaxy Morphology	AC 09	1987ApJ3143E	Arm Class 09
Galaxy Morphology	2	1975SoByu4743A	flat central luminosity profile
Galaxy Morphology	multi-armed spiral	1994CAG1B0000S	multi-armed spiral
Galaxy Morphology	arms branch into multiple	1994CAG1B0000S	arms branch into multiple fragmen
Galaxy Morphology	Type 1 XUV disk	2007ApJS173538T	Type 1 XUV disk
Galaxy Morphology	lopsided galaxy	1980MNRAS.193313B	lopsided galaxy

Many, many other classification schemes exist:

Morphology, colors, bulge:disk ratio, spectral properties, structural properties, star forming properties, luminosity classes, kinematic properties, etc, etc.

Classifications for MESSIER 087

			1 of 1 1 (1 - 96 of 96)
Domain	Published Classification	Refcode	NED Homogenized Classificati
Hierarchy	GM	1975SSS9557d	Group member
Galaxy Morphology	cD pec	1991RC3.9.C0000d	cD0-1 pec
Galaxy Morphology	E0	1981RSAC0000S	E0
Galaxy Morphology	E	1973UGCC0000N	E
Galaxy Morphology	galaxy with jet	1966ApJS141A	jet
Galaxy Morphology	E	2002MNRAS.333423T	E
Galaxy Morphology	3	1975SoByu4743A	no nucleus
Galaxy Morphology	3	1975SoByu4743A	continuous brightening towards c
Galaxy Morphology	jet	1994CAG1B0000S	jet
Galaxy Morphology	Jet	1988AJ95422E	jet
Galaxy Morphology	smooth nebulosity	1964RC1C0000d	smooth nebulosity
Galaxy Morphology	extremely bright center	1964RC1C0000d	extremely bright center
Colorer Morphology	blue ist	1064001 0 00004	hlua iat

Many, many other classification schemes exist:

Morphology, colors, bulge:disk ratio, spectral properties, structural properties, star forming properties, luminosity classes, kinematic properties, etc, etc.

Classifications for MESSIER 082 1 of 1 (1 - 40 of 40) **NED Homogenized Classificati** Published Classification Refcode Domain HI line width HI line width Kinematics 1961BAN....15..307V Galaxy Morphology 1991RC3.9.C...0000d 10 edge-on 10 edge-on Amorphous Galaxy Morphology 1981RSA...C...0000S Amorphous Galaxy Morphology 1973UGC...C...0000N IRR Irr Galaxy Morphology 2s 1975SoByu..47...43A structured nuclear region high-surface-brightness d 1994CAG1..B...0000S Galaxy Morphology high-surface-brightness disk Galaxy Morphology dusty 1994CAG1..B...0000S dusty Galaxy Morphology amorphous 1994CAG1..B...0000S amorphous Galaxy Morphology Sm 1979AISAO..11....3K Sm Galaxy Morphology nb/d 2011ApJ...733L..47F no bulge Radio Morphology 1983MNRAS.204..151L FRI CI 1974MNRAS.167P..31F FRIC Radio Morphology Distance Indianter Tully ont 1000NIDCC C 0000T Tully ont

Trends along the Hubble Sequence

Later-type galaxies tend to be

- lower in luminosity
- more gas rich
- bluer in color

than early-type galaxies.

(caveat: this is for bright galaxies; dwarf galaxies behave differently...)

data catalogs: RC3, UGC

open symbols \Rightarrow mean filled symbols \Rightarrow median errorbars \Rightarrow 25-75% range

Roberts & Haynes 94 ARAA

Luminosity function: number of galaxies (per unit volume) in a luminosity range $L \Rightarrow L + dL$

Common parameterization is the Schechter Function: $\Phi(L)dL = \Phi_* \left(\frac{L}{L}\right)^{\circ}$

 Φ_* : overall density (units = #/Mpc³)

L_{*}: characteristic luminosity, the "knee" of the luminosity function

 α : faint end power law slope

We usually work in magnitudes, looking at the number in an absolute magnitude bin $M \Rightarrow M + dM$

The Schechter LF looks different expressed in magnitudes ($\Phi(M)$ dM) rather than luminosity ($\Phi(L)$ dL)

Note: $\alpha = -1$ is referred to as "flat" because of its shape in magnitude plots, not luminosity plots.

$$ce M = -2.5 log L + C,$$

s means
$$dM \sim \frac{dL}{L}$$

so a magnitude bin is a fractional luminosity bin.

sin this

Luminosity function depends on many things, including filter choice and galaxy color....

magnitudes depend on the assumed Hubble constant. We define $h = H_0/100$, and can then scale the magnitude to any Hubble constant we want.....

Luminosity function depends on many things, including filter choice and galaxy color....

...and a very strong dependence on galaxy type and environment

These are schematic LFs, not real

100Intermediate Mass Cluster **Massive Cluster** Coma (10/13/2/0/75)Virgo (6/9/25/15/45) 10 dЕ dIrrS0Number Density 100 Low Mass Group **Isolated Galaxies** Groups (3/6/62/26/3) Extreme Field (0/0/50/50/0)dIrr 10 dIrrSp SpđE bright 22 $_{\rm faint}$ -14-22 -20-18 -16-20-18-16 _{faint} -14 bright Absolute Magnitude

Inside big galaxy clusters:

- E/S0 dominate
- faint end mostly red things

In groups and field:

- Spirals dominate
- faint end mostly blue things

E = EllipticaldE = dwarf ellipticalS0 = S0dIrr = dwarf irregularSp = Spiral

Galaxies: Morphology-Density Relationship

In the local universe, the fraction of galaxy types is a strong function of local environment.

Spirals/Irregulars dominate the in the field environment.

SO's and E's dominate in galaxy clusters.

Projected Number Density of Galaxies log(# per Mpc²)

Galaxy Structure: Surface Brightness Profiles

Remember, surface brightness is intrinsic, does not depend on distance:

Surface Brightness [μ in mags/arcsec²] \Rightarrow Flux Density on Sky [I in erg/s/cm²/arcsec²] \Rightarrow Luminosity Density in Galaxy [Σ in L_o/pc²]

Galaxy Disks: roughly exponential with radius:

Galaxy Structure: Surface Brightness Profiles

Remember, surface brightness is intrinsic, does not depend on distance:

Surface Brightness [μ in mags/arcsec²] \Rightarrow Flux Density on Sky [I in erg/s/cm²/arcsec²] \Rightarrow Luminosity Density in Galaxy [Σ in L_o/pc²]

Ellipticals and Spiral Bulges:

classically, a de Vaucouleur "r-to-the-quarter" law:

$$I(r) = I_e e^{-7.669[(r/r_e)^{1/4} - 1]}$$

or in mag/arcsec²:

$$\mu(r) = \mu_e + 8.3265 [(r/r_e)^{1/4} - 1]$$
 this will be straight line

against r^{1/4}.

Where

r_e : effective or "half-light" radius, contains half the total light

 μ_e : surface brightness *at* the effective radius

Galaxy Structure: Surface Brightness Profiles

Most spiral galaxies are some **combination** of disk and bulge. Can fit the components separately and arrive at a bulge:disk or bulge:total luminosity ratio ("B/D" or "B/T"):

Figure 6. Logarithm of the *B*-band, bulge-to-disc flux ratio as a function of galaxy type (see Table 5, column 7). The dashed line traces the *B*-band values from Simien & de Vaucouleurs (1986).

Graham & Worley 08

Galaxy Structure: The Sérsic Profile

Instead of using exponential or r^{1/4} fits, use a generalized fitting function called a **Sérsic profile**:

$$I(R) = I_e \exp\left(-b_n \left[\left(\frac{R}{R_e}\right)^{1/n} - 1\right]\right)$$

or, in mag/arcsec²

$$\mu(R) = \mu_e + \frac{2.5b_n}{\ln(10)} \left[\left(\frac{R}{R_e}\right)^{1/n} - 1 \right]$$

Three parameter fits:

 $\label{eq:rescaled} \begin{array}{l} {\sf n}: {\sf S\acute{e}rsic index} \left({b_n \approx 2n - 0.333} \right) \\ {\sf R}_{\sf e}: {\sf effective radius} \left({\sf radius containing half the total light} \right) \\ {\sf \mu}_{\sf e}: {\sf surface brightness at R_{\sf e}} \end{array}$

Note:

n can be anything, but galaxies generally span n \approx 0.5 – 10. n=1: exponential profile n=4: de Vaucouleurs r^{1/4} law.

Galaxy Structure: The Sérsic Profile

$$\mu(R) = \mu_e + \frac{2.5b_n}{\ln(10)} \left[\left(\frac{R}{R_e}\right)^{1/n} - 1 \right]$$

Remember: n=1: exponential

n=4: de Vaucouleur

Three projections of the Sérsic profile

Three parameter fits:

- n : Sérsic index
- R_e : effective radius (half light)

 μ_e : surface brightness at R_e

also can work out:

 $\langle \mu \rangle_e$: average surface brightness within $R_e.$ $m_{tot}:$ total (apparent) magnitude

Higher n: more light at both small and large radius compared to exponential.

Galaxy Structure: The Sérsic Profile

$$\mu(R) = \mu_e + \frac{2.5b_n}{\ln(10)} \left[\left(\frac{R}{R_e}\right)^{1/n} - 1 \right]$$

Disk galaxies are generally a combination of bulge ($n\approx4$) and disk ($n\approx1$). As bulge-to-disk ratio increases, the **total profile** can often be described by intermediate values for n.

Thus the Sérsic index (n) can be used as a tracer of B:D, and thus, crudely, Hubble type.

But remember, a composite profile represented by a given value of Sérsic-n is not conceptually the same as a single component Sérsic profile!

 $\mu(R)$ vs R

disk+bulge

Boroson 81

SDSS: Sloan Digital Sky Survey

Over the early 2000s, SDSS began releasing data for millions of galaxies.

redder

bluer

Spirals (Sa–Sd) Blanton & Moustakas 2009 ARAA

low luminosity

high luminosity

SDSS: Sloan Digital Sky Survey

Over the early 2000s, SDSS began releasing data for millions of galaxies.

SO / Lenticular Galaxies Blanton & Moustakas 2009 ARAA more concentrated

less concentrated

low luminosity

high luminosity

SDSS: Sloan Digital Sky Survey

Over the early 2000s, SDSS began releasing data for millions of galaxies.

> **Elliptical Galaxies** Blanton & Moustakas 2009 ARAA

more concentrated

low luminosity

high luminosity

Careful multicomponent fitting is time intensive, easier just to autofit a single Sérsic profile to each galaxy.

This gives you:

- Sérsic index (n)
- effective radius (r_e, also called r₅₀)
- total magnitude (m)

Multiband data, so also color (g-r)

Sérsic n becomes a proxy for galaxy type

Spectroscopy gives you a Hubble distance, can work out absolute magnitude (M) and physical size. Distance-dependent values have an h ($\equiv H_0/100$) term.

Careful multicomponent fitting is time intensive, easier just to autofit a single Sérsic profile to each galaxy.

This gives you:

- Sérsic index (n)
- effective radius (r_e, also called r₅₀)
- total magnitude (m)

Multiband data, so also color (g-r)

Sérsic n becomes a proxy for galaxy type

Spectroscopy gives you a Hubble distance, can work out absolute magnitude (M) and physical size. Distance-dependent values have an h ($\equiv H_0/100$) term.

> 77, 153 galaxies Blanton & Moustakas 2009 ARAA

Color vs Luminosity:

galaxies segregate into "red sequence" and "blue cloud".

Careful multicomponent fitting is time intensive, easier just to autofit a single Sérsic profile to each galaxy.

This gives you:

- Sérsic index (n)
- effective radius (r_e, also called r₅₀)
- total magnitude (m)

Multiband data, so also color (g-r)

Sérsic n becomes a proxy for galaxy type

Spectroscopy gives you a Hubble distance, can work out absolute magnitude (M) and physical size. Distance-dependent values have an h ($\equiv H_0/100$) term.

> 77, 153 galaxies Blanton & Moustakas 2009 ARAA

Color and Luminosity vs Sérsic n :

- Red galaxies span a range of Sérsic n.
- Blue galaxies tend to have lower n.
- Luminous galaxies tend to be high n and red.

Blanton & Moustakas 2009 ARAA

Galaxy Structure: SDSS and the Deluge of Data

Can derive stellar mass from colors and luminosities

Also have spectroscopic information which tells us

Metallicity: $12 + \log(O/H)$ (Solar ≈ 8.75)

Galaxies follow a **mass-metallicity relation**: more massive galaxies are more metal-rich

Velocity dispersion: σ , in km/s. the characteristic random speeds of stars, a tracer of total mass.

Galaxies with higher stellar mass have higher velocity dispersion.

stellar mass

SDSS is both **flux limited** and **surface brightness limited**. This means it it is likely to miss galaxies that are faint, small, and low in surface brightness.

Night Sky Surface Brightness:

- Full Moon: μ_{B,sky} ≈ 19.5 mag/arcsec²
- New Moon: $\mu_{B,sky} \approx 22.7 \text{ mag/arcsec}^2$

It quickly become hard to detect objects (or measure profiles) when their surface brightness is significantly "below sky."

Particularly problematic for low luminosity galaxies (which are typically low surface brightness: "LSB").

Low surface brightness (LSB) galaxies

There are lots of them out there!

Number of galaxies per Mpc³ as a function of surface brightness (McGaugh 95)

Recent surveys show lots of galaxies exist at really low surface brightness! (Greco+18).

