
Interpreting Rotation Curves: Back to dynamics

Fundamentally, we are building observable tracers of the underlying mass density of galaxies. To understand this, we 
need to ;e it all together with a dynamical understanding of the rela;onships between mass, poten;al, and 
kinema;cs.

A galaxy has a mass distribution given by 𝜌(𝒙).

The gravitational potential is connected to density via Poisson’s equation: 

∇!𝜙 = 4𝜋𝐺𝜌

Acceleration (i..e., motion) is derived from potential via

𝐅 = m𝐚 = 𝑚𝜵𝝓

For spherical mass distributions, we can solve Poisson’s equation as

Φ 𝑟 = −
𝐺ℳ 𝑟
𝑟 − 𝐺5

"

# 4𝜋𝜌 𝑟 𝑟!

𝑟 𝑑𝑟
courtesy Matt Bershady

all mass inside 𝑟 acts 
as a point mass

outside 𝑟, integrate over 
mass shells to get potential



Simple Example: the constant density sphere

Density
𝜌 𝑟 = 𝜌$	 for	𝑟 < 𝑅%&'

Derive mass interior to r:

ℳ 𝑟 = 5
$

"
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Derive circular velocity:

𝑉)!(𝑟) =
𝐺ℳ 𝑟
𝑟 	 or	 𝑉)(𝑟) =

4𝜋𝐺𝜌$
3 𝑟

Derive potential:

Φ 𝑟 = −
𝐺ℳ 𝑟
𝑟
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"

*!"# 4𝜋𝜌 𝑟 𝑟!

𝑟
𝑑𝑟

= −
4𝜋𝐺𝜌$
3

𝑟! − 4𝜋𝐺𝜌$5
"

*!"#
𝑟𝑑𝑟

= −4𝜋𝐺𝜌$
𝑅%&'!

2 −
𝑟!

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

Ω/
Ω 0

Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

M
/M

to
t

Enclosed Mass

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

V
c
/V

c,
m

a
x

Circular Velocity

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R/Rmax

°1.5

°1.0

°0.5

©

Potential

Outside 𝑅%&'	:

𝜌 𝑟 = 0

ℳ 𝑟 =
4𝜋𝑅%&'(

3 𝜌$
= ℳ+,+

𝑉)(𝑟) =
𝐺ℳ+,+

𝑟

Φ 𝑟 = −
𝐺ℳ+,+

𝑟



Mass Modeling Rota>on Curves

• Need to measure velocity (𝑉)) and know distance (to turn angular radial scale into physical scale).

• Need to have good surface brightness profile of the disk and bulge: 𝜇- 𝑅 	and 𝜇. 𝑅

• Need to convert light to mass via a stellar mass-to-light ratio ⁄ℳ 𝐿 ∗This depends on the stellar populations and will 
be different for the disk and bulge, and almost certainly also a function of radius.

• Need to measure gas content: neutral hydrogen is easy, need to correct for associated helium and molecular gas.

• Need to adopt a mass model for  the dark matter halo, 
using theoretical profiles:

Pseudo-Isothermal Halo: 𝜌 𝑟 = 0$

12 %
%&

' 

Navarro-Frenk-White: 𝜌 𝑟 = 0&%()3&
%
%*

12 %
%*

'

Einasto: 𝜌 𝑟 = 𝜌)𝑒𝑥𝑝 −2𝑛 "
"&

1/5
− 1

Adopt profile and 
fit parameters

Observe, correct for inclination,
  adopt distance

Observe µb, adopt (M/L)*,b

Observe µd, adopt (M/L)*,d

Observe HI(+CO)
make corrections

𝑉)! = 𝑉.! + 𝑉-!	+ 𝑉6&7!  + 𝑉8!
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If (M/L)* is high, inner rotation is all due to disk 
mass. Outer parts still need halo component.



courtesy
Matt Bershady
(UWisc)

But if (M/L)* is low, the disk has less mass and the 
halo dominates throughout.

Disk/Halo Degeneracy: we need to know (M/L)* 
very accurately to break this degeneracy!



Spiral structure in disks

Types of spirals:

Grand design: 2 well-defined, symmetric spiral arms.

Flocculent: spiral arm “fragments”, not continuous

Multiple arms: 3, 4, etc

Barred spirals

M81 (Adam Block)



Types of spirals:

Grand design: 2 well-defined, symmetric spiral arms.

Flocculent: spiral arm “fragments”, not con;nuous

Mul;ple arms: 3, 4, etc

Barred spirals

NGC 2841

Spiral structure in disks



Types of spirals:

Grand design: 2 well-defined, symmetric spiral arms.

Flocculent: spiral arm “fragments”, not continuous

Multiple arms: 3, 4, etc

Barred spirals

NGC 5054 (Michael Sidonio)

Spiral structure in disks



Types of spirals:

Grand design: 2 well-defined, symmetric spiral arms.

Flocculent: spiral arm “fragments”, not continuous

Multiple arms: 3, 4, etc

Barred spirals: arms coming off a central bar

Spiral structure in disks



Proper>es of Spirals

Color image: optical/H⍺
Countours: radio continuum

Very prominent at blue wavelengths, in H⍺ 
emission, and in radio continuum: star 
formation tracers.



Properties of Spirals

Very prominent at blue wavelengths, in H⍺ 
emission, and in radio continuum: star 
formation tracers.

Strong dust lanes (often inside the arms): 
shows where gas enters the spiral arm.



Properties of Spirals

Very prominent at blue wavelengths, in H⍺ 
emission, and in radio continuum: star 
formation tracers.

Strong dust lanes (often inside the arms): 
shows where gas enters the spiral arm.

Velocity perturbations of ~ 20-30 km/s along 
spiral arms: arms are a significant enhancement 
of mass.



Properties of Spirals

Very prominent at blue wavelengths, in H⍺ 
emission, and in radio con;nuum: star 
forma;on tracers.

Strong dust lanes (oden inside the arms): 
shows where gas enters the spiral arm.

Velocity perturba;ons of ~ 20-30 km/s along 
spiral arms: arms are a significant enhancement 
of mass.

In red light, spiral arms are smoother, broader, 
lower in amplitude. Red light traces older stars, 
showing that the en;re disk par;cipates in the 
spiral structure.

Schweizer 76
M81: azimuthal surface brightness and color

blue

red

color

spiral arms 

https://ui.adsabs.harvard.edu/abs/1976ApJS...31..313S/abstract


Winding Problem

Imagine pain;ng a radial stripe on a rota;ng galaxy at 
some angle 𝜙$. 

𝜙 = 𝜙!



Winding Problem

Imagine painting a radial stripe on a rotating galaxy at 
some angle 𝜙$. After some time 𝑡, that stripe will “wind 
up” and follow the equation

𝜙 𝑅, 𝑡 = 𝜙$ + Ω 𝑅 𝑡

where Ω 𝑅 = 𝑉(𝑅)/𝑅 is the angular rotation frequency. 

The spiral has a pitch angle 𝛼 defined by

cot 𝛼 = 𝑅
𝜕𝜙
𝑑𝑅 = 𝑅𝑡

𝜕Ω
𝜕𝑅

If we want the stripe to stay fixed in shape (but allow it to 
rotate), what is the requirement for 𝑉(𝑅)?

We would need a constant Ω 𝑅 , meaning 𝑉 𝑅 	~	𝑅. 

Do galaxies behave this way?

𝜙 = 𝜙!

remember, here 𝜙 
refers to the arm 
orientation, not 
the gravitational 
potential!



Winding Problem

How fast would galaxies “wind up”?

The stripe will wrap completely at a time 𝑡 where

2𝜋 = Ω 𝑅 + Δ𝑅 − Ω(𝑅) 	×	𝑡

where Δ𝑅 would be the distance between wraps.

If Δ𝑅 ≪ 𝑅, 	then	 Ω 𝑅 + Δ𝑅 = Ω 𝑅 + 9:
9*
Δ𝑅

so	 2𝜋 =
𝜕Ω
𝜕𝑅 Δ𝑅 	×	𝑡

or	 Δ𝑅 =
2𝜋
𝜕Ω
𝜕𝑅 𝑡

=
2𝜋𝑅
cot 𝛼

where that last step comes from the definition of pitch angle.

𝜙 = 𝜙!



Winding Problem

Put in some numbers. If

Δ𝑅 =
2𝜋
𝜕Ω
𝜕𝑅 𝑡

=
2𝜋𝑅
cot 𝛼

Then for a Milky Way type galaxy with
• Ω 𝑅 𝑅 = 𝑉) = 220 km/s
• 𝑅 = 10 kpc
• 𝑡	 ≈ 10 Gyr

we get:

𝛼 = 0.25 degrees
Δ𝑅 = 0.3 kpc

Hmm.... Real galaxies have much bigger pitch angles è

So spiral arms in galaxies are not so tightly wound!
Kennicutt 81

Look at observed pitch angles

https://ui.adsabs.harvard.edu/abs/1981AJ.....86.1847K/abstract


Making spiral arms

Imagine making a linear “ridge” of stars and lemng it orbit around the galaxy. What happens over ;me?

🤔                   😃                   😍            🥳   😧            😬   😱            😵💫
The winding problem

Galaxies do not rotate like a solid object – since 𝑉)(𝑅)	is roughly constant with radius , the orbital time is short in the 
inner disk and long in the outer disk. This means any physical structure will wind up very quickly and be sheared away.

What would the rotation curve have to look like for this not to be a problem?

Orbital time is 𝑇 = !;*
<&(*)

   so if the orbital time needs to be the same at all radius, then 𝑉) 𝑅 = !;*
?
	~	𝑅

“Solid Body Rotation”
Not what galaxies do! 



Spiral Density Waves

Spirals cannot be physical structures orbi;ng coherently for long ;mescales. Instead, they are density waves moving 
through the disk. What is a density wave?

A traffic jam is an example of a density wave. Cars move in and out of the jam at a different speed than the jam itself moves.



Density Waves

Spiral arms can’t be physical arms – they would wind up too quickly.

Instead consider a “density wave” – a pattern that moves through the disk at a frequency Ω@ < Ω,".. Individual stars move 
in and out of the pattern as they orbit the galaxy, but their orbits are coordinated in such a way to sustain the pattern.

Q: How can orbits be coordinated to make a pattern? Need to think in terms of how orbits look in a rotating frame of 
reference.

Remember the important frequencies of orbits:
• Ω: orbital frequency (V/R)
• 𝜅: epicyclic frequency

Viewed in a non-rotating frame, orbits in galactic potentials are open 
rosettes, since Ω/𝜅 is generally non-integer.

Non-rotating frame

Ω!	is called the 
pattern speed.



Density Waves

Spiral arms can’t be physical arms – they would wind up too quickly.

Instead consider them as “density waves” moving through the disk at a frequency Ω@ < Ω,".. Individual stars 
move in and out of the paSern as they orbit the galaxy, but their orbits are coordinated in such a way to sustain 
the paSern.

Q: How can orbits be coordinated to make a paSern? Need to think in terms of how orbits look in a rota;ng frame 
of reference.

Remember the important frequencies of orbits:
• Ω: orbital frequency (V/R)
• 𝜅: epicyclic frequency

Viewed in frame rotating at 𝜴𝒑 = 	𝜴, we saw the orbit showed the 
epicyclic motion.

(Here the rotating frame shows you how stars move relative to average 
circular motion as the disk rotates.)

Frame rotates at Ω@ = 	Ω 



Density Waves

Spiral arms can’t be physical arms – they would wind up too quickly.

Instead consider them as “density waves” moving through the disk at a frequency Ω@ < Ω,".. Individual stars 
move in and out of the pattern as they orbit the galaxy, but their orbits are coordinated in such a way to sustain 
the pattern.

Q: How can orbits be coordinated to make a pattern? Need to think in terms of how orbits look in a rotating frame 
of reference.

Remember the important frequencies of orbits:
• Ω: orbital frequency (V/R)
• 𝜅: epicyclic frequency

Viewed in frame rotating at 𝜴𝒑 = 	𝜴 − ⁄𝜿 𝟐, the orbit appears as a 
closed ellipse.

(Here the rotating frame shows you how stars move relative to an 
average motion at Ω@.)

Frame rotates at Ω@ = 	Ω − B
!



Density Waves

In general, viewed in frames rota;ng at Ω@ = 	Ω − 5
%
𝜅 orbits appear closed if 𝑛,𝑚 are integers.

Closed orbits in a rota;ng frame mean that the paSern will stay in shape, but rotate slowly at a rate Ω@, even 
though the stars are orbi;ng at a different rate of Ω = 	 ⁄𝑉) 𝑅.

So we can set up nested orbits in a variety of paSerns to form bars 
and spirals (𝑚 = 2):

Those spiral patterns will then rotate at a pattern speed Ω@ = 	Ω − 5
%
𝜅, and stars (orbiting at Ω) will move in 

and out of the spiral pattern. 

Or one-armed spirals 
(𝑚 = 1): 



Density Waves

Remember, Ω and 𝜅 are set by the rotation curve. So we 
can look at Ω@ = 	Ω − 5

%
𝜅 as a function of radius given a 

rotation curve.

For typical rotation curves, Ω − B
!
 is nearly constant over 

a wide range of radius.

Look at winding up via spiral arm pitch angles.

Smaller gradient means bigger pitch angles (less winding)

Since Ω − B
!
 is not perfectly constant, we still have 

winding, but slower by a factor of ~ 5. So density waves 
last longer, but still must be regenerated or reinforced.

Physical arms cot 𝛼 =𝑅𝑡
𝜕Ω
𝜕𝑅

Density waves cot 𝛼 =𝑅𝑡
𝜕(Ω − ⁄𝜅 2)

𝜕𝑅



Density Waves

So far, we have only considered kinematic density waves 
(correlated motion). But as stars move through the 
pattern, the mass of the density wave can perturb their 
motion and strengthen the wave: “self-gravity.”

A star passes through the pattern with a frequency 
𝑚 Ω@ − Ω(𝑅) . If that frequency is slower than the 
epicyclic frequency, the perturbation will strengthen the 
spiral pattern.

m=2 spirals reinforced only in the region where

Ω − ⁄𝜅 2 < Ω@ < 	Ω + ⁄𝜅 2

These critical limits are known as the Inner and Outer 
Lindblad Resonances. At the LRs, a star enters the pattern 
each time at the same point in the epicycle. This pumps 
energy into the orbits of stars, destroying the wave 
pattern.

Ωp

ILR OLR



Spiral Density Waves: Recapping the story....

• Spiral patterns are waves moving through the disk at an angular speed Ω@. Stars move through this 
wave but do not stay in it (think cars on the freeway moving through a traffic jam....).

• Properties of the wave depend on the circular speed and the epicyclic frequency of the disk.

• Spiral waves can be sustained between the 
inner and outer Lindblad resonances.

• The gravity of the disk can amplify/sustain the 
spiral beyond a pure kinematic wave.

• Arms still wind up, but more slowly than 
expected if rotating at the rotation frequency, 
Ω.

• As gas moves into the spiral arms, it is shocked 
and driven into gravitational collapse, 
triggering star formation.



But where do they come from?

Rotational shearing: Take a patch newly 
formed stars, shear it out as the galaxy 
rotates.

Works on small scales, likely what’s going 
on in flocculent spirals.

Not a good explanation by itself for 
large, organized spiral arms. But maybe 
self gravity can amplify the effect?

M63



But where do they come from?

Interactions: A companion galaxy can drive a perturbation 
that leads to spiral structure.

But not all spirals have massive companions. 

• Past encounters?

• Lower mass companions driving periodic perturbation?



But where do they come from?

Bars: The gravitational perturbation of a 
rotating bar may drive spiral waves in the disk.



Instability and Galactic Bars

Spiral density wave scenario built on linear perturbation theory, epicyclic approximation, etc: all small amplitude 
deviations from axisymmetry and circular motion. What happens when the amplitude gets too strong?

Stars no longer stay on near-circular rosettes – they lose angular momentum and move along more radial orbits along 
the rotating bar: “trapped in the bar”. 

Bar drives strong shocks and inflow of gas to the inner regions.

Piner+99 (courtesy J. Stone)

https://ui.adsabs.harvard.edu/abs/1995ApJ...449..508P/abstract


NGC 1512: Barred Galaxy with Starburst Ring



Norman+ 96

To destroy the bar, need to scatter 
stars off the X1 orbits that define 
the bar.

Central mass concentations more 
massive than ~ few % of disk mass 
can do this scattering.

What are “central mass 
concentrations” and how can we 
get them?

5% mass central concentration 
grown slowly in barred galaxy 
simulation. 👉

Destroying the bar

https://ui.adsabs.harvard.edu/abs/1996ApJ...462..114N/abstract


Disk Stability: the Toomre Q-parameter

Waves can grow or dissipate, depending on kinematics of the rotation curve and the self-gravity of the disk.

Toomre (1964) derived a condition for disk stability for 𝑚 = 0 axisymmetric modes (rings):

𝜎*: radial velocity dispersion
𝜅: epicyclic frequency
Σ: disk mass surface density

Qualitatively: Self-gravity tries to draw a perturbation together, but if over an epicyclic timescale a star skates from one 
perturbation to another, no single perturbation will grow. ⇒ Stability.

Used as an indicator for local (small-scale) instabilities:

𝑄 ≫ 1: “hot disk”, very hard to make perturbations grow.
𝑄 ≪ 1: “cold disk”, very unstable, mass perturbations will 
grow quickly with time.

What happens to a disk with 𝑄 ≪ 1?

Milky Way (solar neighborhood):

• 𝜎* ≈ 30 km/s
• 𝜅	 ≈ 36 km/s/kpc
• Σ ≈ 50 M☉/pc2

𝑄	~1.4

𝑄 =
𝜎i𝜅

3.36𝐺Σ
> 1

https://ui.adsabs.harvard.edu/abs/1964ApJ...139.1217T/abstract


Disk Instabilities and Star Formation Martin & Kennicutt 01

H⍺ imaging and H⍺ surface brightness profiles

Galaxies often show a 
reasonably well defined 
radius beyond which very 
little widespread star 
formation is observed.

https://ui.adsabs.harvard.edu/abs/2001ApJ...555..301M/abstract


Star formation does sometimes occur in galaxy 
outskirts, but much weaker in intensity and less well 
organized

“extended disk star formation”
or
“XUV galaxies”

Disk Instabilities and Star Formation

M83
GALEX UV



Star forma;on does some;mes occur in galaxy 
outskirts, but much weaker in intensity and less well 
organized

“extended disk star forma;on”
or
“XUV galaxies”

M83
GALEX UV
21-cm HI

Disk Instabilities and Star Formation



𝜎*: radial velocity dispersion
𝜅: epicyclic frequency
Σ: disk mass surface density

𝑄 =
𝜎i𝜅

3.36𝐺Σ
> 1

Remember the expression for local disk stability.

Instability-Driven Star Formation Scenarios

At lower densities disks are more stable. Solve for the density where 𝑄 = 1 and call that the critical density:  

𝑄 =
𝜎i𝜅

3.36𝐺Σ
= 1	 ⟶	 Σjklm =

𝜎i𝜅
3.36𝐺

Then we have two regimes:

• High gas density: Σ6&7 > Σ)"C+ , gas is ”supercritical” and can undergo gravitational collapse to form stars 

• Low gas density: Σ6&7 < Σ)"C+ , gas is  stable, not enough gravity to drive collapse. No star formation.

But this is all a simplified theory. Does it actually work?



↑ where star formation stops

Does it work?

Martin & Kennicutt 01

← star forma;on      no star forma;on →

(unstable)

↑

Ratio of
gas density

to
critical
density

↓

(stable)

Ratio of Total Radius / Star Forming Radius

Maybe?
Kinda?

Outer disks
are typically
below the 
critical density, 
but inner disks 
are more 
complicated..

unstable

stable

https://ui.adsabs.harvard.edu/abs/2001ApJ...555..301M/abstract


↑ where star formation stops

Or is it simply local conditions?

Ignore critical/dynamical
arguments, just look
at total gas density.

Mar;n & KennicuS 01

𝜇6&7 = 10	𝑀⊙	𝑝𝑐E!

(high)

↑

Log of Total
Gas Density

↓

(low)

Ratio of Total Radius / Star Forming Radius

← star formation      no star formation →

https://ui.adsabs.harvard.edu/abs/2001ApJ...555..301M/abstract


“Efficiency”: how 
much of the gas 
is converted to 
stars over 108 yrs.

Kennicutt & Evans ARAA 2012

Low density environments

Star forma;on efficiency greatly reduced.

Is it dynamical stability (a global concept applied 
locally) or is it purely local condi;ons? Unclear.

But whatever is happening is connected to disk 
galaxy evolu;on: lower SFRs, lower metallici;es,
more gas-rich, less molecular gas, etc.

Compare:
• LSB galaxies
• low density outskirts of HSB galaxies

Differences and similariHes will tell us much....

https://ui.adsabs.harvard.edu/abs/2012ARA%26A..50..531K/abstract



