
ASTR 323/423 HW #4 
 
1. Freeman’s Law (15 points) 
 
In 1970, Ken Freeman published a study saying that disk galaxies all had a characteristic central surface 
brightness of 𝜇𝐵,0 ≈ 21.7 mag/arcsec2. We now know that Freeman’s Law is a result of selection effects, 
galaxies exist at much lower central surface brightness, but can be hard to see. So let’s work out some 
numbers. 
 

• First, how many Lsun come from the central square parsec of a 𝜇𝐵,0 ≈ 21.7 mag/arcsec2 galaxy? 

• If the galaxy has a total absolute magnitude of 𝑀𝐵 = −20.5, what is its luminosity in solar luminosities? 

• Assuming the galaxy has no bulge, show that the galaxy must have an exponential scale length of ℎ𝑅 ≈
5.4 kpc, that 𝑅25 ≈ 3ℎ𝑅, and that about 80% of the galaxy’s total light falls within 𝑅25. 

• For a low surface brightness galaxy with the same luminosity but 𝜇𝐵,0 ≈ 24.5 mag/arcsec2, show that < 
10% of the light comes from within 𝑅25. 

 
Now think about a sample of spiral galaxies with luminosity 𝐿𝐵 = 2.5 × 1010𝐿⨀. For these galaxies, the larger 
the scale length hR, the fainter 𝜇𝐵,0 must be (right?). So, do the following: 

• For the range of scale lengths 1 kpc <  ℎ𝑅 < 30 kpc, plot 𝑅25 (in kpc) against hR, and 𝑅25 against 𝜇𝐵,0.  

• Show that 𝑅25 is small when hR is small, then rises to a maximum, and then declines to zero at hR=24 
kpc. Explain physically why this happens. 

• Explain why galaxies with a central surface brightness a factor of 10 lower (in linear units; convert to 
surface brightness) might have been missed from Freeman’s 1970 sample. 

 
(Very small galaxies are also difficult to study: those with 𝑅25 < 30", or 6 kpc at 𝑑 ≈ 40 Mpc, are likely 
omitted from those early catalogs.) 
  
 
2. Disk Stability (15 points) 
 
Here we are going back to the disk/bulge/halo galaxy model that you built in HW #3. Using the properties of 
that model (or if you ran into difficulties on that problem, use the properties I gave in the solution set)  
let’s look at the stability of the disk in that model. In class, we talked about the Toomre 𝑄 criterion, which was 
an estimate of local stability. In other words, it measures the likelihood that, at some spot in the galaxy, small 
regions might start to contract due to gravity. 
 
Toomre also defined a global instability parameter for bar formation, which show where a galaxy might be 
susceptible to going unstable and forming a strong bar. He called this the 𝑋2 stability parameter, and it is given 
by 

𝑋2 =
𝜅2𝑅

4𝜋𝐺Σ
 

 
If 𝑋2 > 1, the galaxy is stable and is not likely to form a bar, but if 𝑋2 < 1, it will become unstable and can 
form a bar. 
 
We are going to look at the stability parameters for two models. One will be the disk/bulge/halo galaxy model 
you built in HW #3, and the other will be the same disk/halo model, but with no bulge (so, you’ll just set 
𝑀𝑏𝑢𝑙𝑔𝑒 = 0 for the second model). 



 
For each of these models, you can calculate the 𝑄 and 𝑋2 stability parameters as a function of radius. You’ll 
need to know how the radial velocity dispersion (𝜎𝑟) changes with radius. To work this out, assume the galaxy 
is like the Milky Way: its stars have a radial velocity dispersion of 𝜎𝑅 = 30 km/s at the solar radius, and the 
velocity dispersion and disk surface density are related by 𝜎𝑅

2 ∝ Σ𝑑𝑖𝑠𝑘. That will let you calculate 𝜎𝑅 as a 
function of radius. Also, be careful here: when using the stability formulae, remember that you’ll need to 
convert your epicyclic frequency from km/s/kpc to km/s/pc, since if you use 𝐺 = 4.3 × 10−3 you’ll need your 
all your units to be in km/s, parsecs, and solar masses. 
 
For each of your disk/halo model and your disk/bulge/halo model, make plots as a function of radius (use the 
same x- and y- limits for your plots that you used in HW #3) of 
 

• The circular velocity V(R)  

• Ω, Ω − 𝜅 2⁄ , and Ω + 𝜅 2⁄  , also marking the pattern speed of the Milky Way’s spiral arms like you did 
in Problem 1. Note where the Lindblad resonances are in each case. 

• the two stability criteria: 𝑄 and 𝑋2 (make your y-axis limits 0 to 5 when plotting). 
 
Finally, from what you see in these plots, discuss how the presence or absence of a central bulge is likely to 
affect the dynamics of the disk in terms of spiral or bar structures.  
 
(You might also be interested in a paper by Mihos, McGaugh, and de Blok (1997) that discusses some of these 
issues as they pertain to low surface brightness galaxies as well…) 
 
3. Elliptical Galaxy M/L ratios (15 points) 
 
A simple estimator for the mass of a kinematically hot (dispersion dominated) system is given by 𝑀 ≈
6𝜎2𝑟𝑐/𝐺, where 𝜎 is the observed velocity dispersion and 𝑟𝑐 is the core radius of the galaxy. If we assume the 
galaxy has a constant luminosity density (𝐼0 in 𝐿⊙ 𝑝𝑐−2) within its core radius, write an expression for the 
mass to light ratio (𝑀/𝐿) of the galaxy’s core in terms of 𝜎, 𝑟𝑐, and 𝐼0. 
 
This figure shows the inner surface brightness 
profiles of the luminous cored elliptical galaxy NGC 
1399 and the fainter, cuspy elliptical NGC 596. (The 
y-axis is in V mags per arcsec2). Calculate the central 
luminosity density of each galaxy in units of 
𝐿⊙ 𝑝𝑐−2. (Hint: You did something very similar in 

Problem #2 of HW #3; but be careful, we are 
working in V mags here, not B mags.) 
 
The core radius of NGC 1399 is about 5 arcsec, or 
400 pc. If the galaxy has a central velocity dispersion 
of 𝜎 ≈ 350 km/s, show that the mass to light ratio 
of the galaxy’s core is similar to that of globular 
clusters (𝑀 𝐿⁄ ≈ 5𝑀⊙/𝐿⊙). 
 
Now let’s look at the globular clusters in the outskirts of NGC 1399. The size of the globular cluster system is 
about 9 arcminutes in radius, and the clusters show a velocity dispersion of 𝜎 ≈ 275 km/s. Adopting a simple 

approximation which relates velocity dispersion and circular velocity as 𝜎 = 𝑉𝑐 √2⁄ , show that if NGC 1399 lies 

https://ui.adsabs.harvard.edu/abs/1997ApJ...477L..79M/abstract


at a distance of 20 Mpc, it must have a total mass of 𝑀 ≈ 2 × 1012 𝑀⊙. If the galaxy also has an apparent 
magnitude of 𝑚𝑉 = 9.8, work out the galaxy’s total mass to light ratio. 
 
Comparing the mass to light ratio of the core to that of the galaxy as a whole, what can you say about how the 
dark matter is distributed in NGC 1399? 
 
4. Dynamical Friction (15 points) 
 
If we adopt a density distribution for the Galaxy’s dark matter halo that looks like an isothermal sphere with a 
circular velocity 𝑉𝑐: 

𝜌(𝑟) =
𝑉𝑐

2

4𝜋𝐺𝑟2
 

 
First, work out the rotation curve for this density distribution and show that the circular velocity at all radii is 
constant and given by 𝑉𝑐(𝑅) = 𝑉𝑐. (To do this, remember that the total mass interior to a radius 𝑟 is given by 

𝑀(𝑟) = ∫ 4𝜋𝑟2𝜌(𝑟)𝑑𝑟
𝑟

0
.) 

 
Now use the expression for the deceleration by dynamical friction that was given in class to show that the 
friction force opposing the motion of an object of mass 𝑀 traveling on a circular orbit around the Galaxy is 
given by  

𝐹∥ = −
𝐺𝑀2

𝑟2
ln Λ 

 
where ln Λ is the Coulomb logarithm. If the object spirals in slowly, we can approximate its motion as circular 
and write its angular momentum as 𝐿 = 𝑀𝑟𝑉𝑐 . We also know that torque (𝜏 = 𝑟 ⊗ 𝐹) is the rate of change of 
angular momentum, in other words for a circular orbit:  
 

𝑑𝐿

𝑑𝑡
= 𝜏 = 𝑟𝐹∥ 

 
If the satellite doesn’t lose mass (so 𝑑𝑀/𝑑𝑡 = 0) write down and solve a differential equation for the inspiral 
rate 𝑑𝑟/𝑑𝑡 to show that the time to sink to the center of the galaxy is  
 

𝑡𝑠𝑖𝑛𝑘 =  
𝑟2𝑉𝑐

2𝐺𝑀 ln Λ
 

 
A more complete calculation gets a value that is about twice this timescale, so let’s use 2𝑡𝑠𝑖𝑛𝑘  as our estimator 
of the sinking time. Using that estimator, do the following. 
 

• Consider the Large Magellenic Cloud (𝑀 ≈ 2 × 1010 𝑀⊙, 𝑟 ≈ 50 kpc). Calculate an appropriate value 
for the Coulomb logarithm and use that to calculate the sinking time of the LMC into the center of the 
Milky Way.  
 

• Now consider a 106 𝑀⊙ globular cluster. Again calculate the appropriate Coulomb logarithm and then 
work out how close such a globular cluster has to be to the Galaxy to spiral in within 10 Gyr. 

 
Finally, explain qualitatively how and why you think the estimate for the LMC’s sinking time would change if 
the orbit was more elongated, or if we factored in mass loss from the LMC due to tidal stripping.  



 
5. (ASTR 423 students only!) Flux and distance uncertainties 
 

• Starting with the definition of the magnitude system: 𝑚1 − 𝑚2 = −2.5 log(𝑓1 𝑓2⁄ ), use differential 
calculus to show that for small magnitude uncertainties, the magnitude uncertainty is related to the 
relative flux uncertainty by the expression 𝜎𝑚 ≈  𝜎𝑓 𝑓⁄ . In other words, show that (for example) a 

magnitude uncertainty of 0.1 mag is a relative flux uncertainty of about 10%. 

• Starting with the definition of the distance modulus: 𝑚 − 𝑀 = 5 log(𝑑) − 5, use differential calculus to 
show that for small uncertainties in the distance modulus (𝜎𝑚−𝑀), the relative uncertainty in distance 
is roughly half the uncertainty in distance modulus. In other words, show that 𝜎𝑑 𝑑⁄ ≈ 0.5𝜎𝑚−𝑀. 

 
6. (ASTR 423 students only!) The Faber-Jackson Law and the Fundamental Plane (15 points) 
 
In this problem, we are going to explore the Faber-Jackson Law and Fundamental Plane correlations for a 
sample of elliptical galaxies. For this exercise, use the dataset of Sloan Digital Sky Survey galaxies you 
downloaded in HW#2. 
 
First, read in the galaxy dataset and use Hubble’s Law to get distances for each galaxy and then also calculate 
their absolute g-band magnitude (𝑀𝑔). Then make a plot of absolute magnitude vs 𝑔 − 𝑟 color so that you can 

see the red and blue sequence. If you use this code snippet, it will produce a nice density plot that lets you see 
the sequences really well: 
 
from matplotlib.colors import LogNorm 

absmag_bins   = np.linspace(-23,-12,200)   # absolute mags: -23 < M_g < -12 

color_bins    = np.linspace(-0.5,1.5,200)  # g-r color: -0.5 < g-r < 1.5 

plt.hist2d(<abs-gmag>, <g-r color>, bins = (absmag_bins,color_bins), norm = LogNorm(1,100)) 

 

Now work out the slope and intercept values for a line that runs through the red sequence. Don’t try and do a 
numerical fit, just estimate it by eye, overplot it, and then tweak the slope and intercept values until you think 
it runs through the red sequence points pretty well. That line we will refer to as the “spine” of the red 
sequence. If you express this line as 
 

(𝑔 − 𝑟) = 𝐴𝑟𝑠 × 𝑀𝑔 + 𝐵𝑟𝑠 

 
then what are your values for the slope (𝐴𝑟𝑠) and intercept (𝐵𝑟𝑠) of the red sequence spine? 
 
Now we want to pick a sample of elliptical galaxies from that dataset. We want a sample of reasonably 
luminous elliptical galaxies with well-measured velocities, and we want to select the sample in a way that 
“weeds out” any disk galaxies that might be in the dataset. So let’s think about our criteria: 
 
We know ellipticals should lie close to the red sequence spine. We also know that the light profiles of 
ellipticals are more concentrated (at least in the inner parts) than those of spiral galaxies. We can characterize 
the concentration of a galaxy as the ratio of the radius holding half the total light 𝑟50 to that holding 90% of 
the total light 𝑟90, and studies have shown that ellipticals have concentrations 𝑟50 𝑟90⁄ < 0.4.  
 
Finally, we know that ellipticals have very low star formation rates. We can characterize something known as a 
“build time”, which is the time it takes to build a galaxy’s stellar mass given the current star formation rate: 
𝑡𝑏𝑢𝑖𝑙𝑑 = ℳ∗ 𝑆𝐹𝑅⁄ . Star-forming spiral galaxies have build times which are typically several billion years, while 
ellipticals will have very long build times: they are massive and have very little current star formation.   
 



So we want galaxies which are: 
1. reasonably luminous: absolute magnitudes brighter than -16: (𝑀𝑔 < −16) 

2. having colors that lie within ±0.1 mags of the red sequence spine: 

|(𝑔 − 𝑟) − (𝐴𝑟𝑠 × 𝑀𝑔 + 𝐵𝑟𝑠)| ≤ 0.1 

3. are centrally concentrated: 𝑟50 𝑟90⁄ < 0.4 
4. have build times which are much longer than the age of the universe: 𝑡𝑏𝑢𝑖𝑙𝑑 > 2.5𝑡𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒  
5. and have velocity dispersions in the range 50 km s⁄ < 𝜎 < 350 km/s 

 
 
The various properties to make this selection are in the datafile. The sizes 𝑟50 and 𝑟90 (in arcsec, measured in 
the g-band) are in the dataset as ‘petroR50_g’ and ‘petroR90_g’. The log of the stellar mass (ℳ∗, in units of 
ℳ⨀) is given as ‘lgm_tot_p50’, and the log of the star formation rate (𝑆𝐹𝑅, in units of ℳ⨀ 𝑦𝑟⁄ ) is given as 
‘sfr_tot_p50’.  
 
The easiest way to build the sample is by using a ‘stacked Boolean flag’ system: 
 
# start with criterion 1 

ellip_gals = (absmag_g<-16)  

# add criterion 2 

ellip_gals = np.logical_and(ellip_gals,np.abs(gr_color-(Ars*absmag_g+Brs))<0.1) 

# and so on, stacking each criterion onto the flag. 

 
After you do this, ellip_gals will be a Boolean array which is =1 if a galaxy meets your criteria, and is =0 if a 
galaxy doesn’t. So you could find out how many galaxies are in your sample by saying 
print(np.sum(ellip_gals)). And if you wanted to make a plot of two properties just for objects in your sample, 
you could say: 
plt.scatter(data[‘property1’][ellip_gals], data[‘property2’][ellip_gals]).  

 
So how many galaxies are in your sample? 
 
Now, make a plot of the Faber-Jackson relationship (𝑀𝑔 = 𝑎 log 𝜎 + 𝑏) for your sample, fit a straight line, and 

give the properties of the fit: slope (𝑎), intercept (𝑏), and scatter around the fit. 
 
Remember that scatter is defined as the standard deviation of the points around the fitted relationship, so you 
want to calculate the quantity 𝑀𝑔 − 𝑀𝑔,𝑓𝑖𝑡 (= 𝑀𝑔 − [𝑎 log 𝜎 + 𝑏]) for all the galaxies, and then take the 

standard deviation of that. 
 
Then, fit the Fundamental Plane (log 𝑅𝑒 = 𝑎 log 𝜎 + 𝑏〈𝜇〉𝑒 + 𝑐). For this, make sure that 𝑅𝑒 is expressed in 
kiloparsecs; in other words, use the distance to convert the observed 𝑟50 from arcsec into physical 𝑅𝑒 in kpc.  
Also you can calculate the effective surface brightness for each galaxy in mag/arcsec2 using the relationship 
〈𝜇〉𝑒 = 𝑚𝑔,ℎ𝑎𝑙𝑓 + 2.5 log(𝜋𝑟50

2 ), where 𝑚𝑔,ℎ𝑎𝑙𝑓 is the magnitude corresponding to half the total light. Doing 

that, fit the Fundamental Plane and give the properties of the fit (𝑎, 𝑏, 𝑐) and the scatter around the fit. Then, 
finally to ensure the fit worked, you can plot log 𝑅𝑒 (on the y-axis) vs 𝑎 log 𝜎 + 𝑏〈𝜇〉𝑒 + 𝑐 (on the x-axis) and 
then draw a line of equality (y=x). If the fit worked, the line should go through the data points pretty well. 
 
And in this case, since we are fitting log 𝑅𝑒, to calculate the scatter, we calculate the log 𝑅𝑒 − log 𝑅𝑒,𝑓𝑖𝑡 for all 

the galaxies and take the standard deviation of that. 
 
Now, imagine you measure the following observed properties for an elliptical galaxy: 
 



• apparent magnitude: 𝑚𝑔 = 13.6 

• angular size: 𝑟𝑒 = 8.2 arcseconds 

• velocity dispersion: 𝜎 = 150 km/s 

• surface brightness: 〈𝜇〉𝑒 = 20.2 mag/arcsec2 
 
Calculate the distance to the galaxy first using the Faber-Jackson relationship. Then calculate the uncertainty 
on that distance using the scatter in the Faber-Jackson relationship. That is, calculate the range of distances 
you get if you calculate them using an absolute magnitude of 𝑀𝑔 ± FJ-scatter. 

 
Next calculate the distance to the galaxy using the Fundamental Plane, and then also the uncertainty on that 
distance using the scatter in the Fundamental Plane. Meaning, again, calculate the range of distances you get 
if you calculate them using a physical half-light radius of 𝑅𝑒 ± FP-scatter. 
 
Comment on the relative accuracy of the two methods for determining distances. 
 
Finally, if you need it, here is a code block that can do fitting of lines and planes using the astropy.modeling 
tools: 
 
from astropy.modeling.models import custom_model 

from astropy.modeling.fitting import LevMarLSQFitter 

 

# set up two “custom_models” which are functions you want to fit. We’ll 

# make one for fitting a line and one for fitting a plane. 

 

# define a line, i.e., a function which returns Y = a*X + b 

@custom_model 

def line(X, a = 0., b = 0.): 

    return (a*X + b) 

 

# define a plane, i.e., a function which returns Z = a*X + b*Y + c 

@custom_model 

def plane(X,Y, a = 0., b = 0., c = 0.): 

    return (a*X + b*Y + c) 

 

# this defines the type of fitting you are doing, in this case a least squares 

# fit using a Levenberg-Marquardt algorithm 

fitter = LevMarLSQFitter() 

 

# now say you have some data xdata, ydata, zdata and you want to do some fitting 

 

# you can fit a line to xdata and zdata by saying 

model = line(a = 1.0, b = 1.0) # we give it initial guess for a and b 

line_fit = fitter(model, xdata, zdata) 

print(f'   slope : {line_fit.a.value:.3f}') 

print(f'   intercept : {line_fit.b.value:.3f}') 

# and you can ask what the fitted value of z is given xdata by saying 

z_fit = line_fit(xdata) 

 

#Or a plane to xdata, ydata, and zdata by saying 

model = plane(a = 1.0, b = 1.0, c=1.0) # we give it initial guess for a, b and c 

plane_fit = fitter(model, xdata, ydata, zdata) 

print(f'   term1 : {plane_fit.a.value:.3f}') 

print(f'   term2 : {plane_fit.b.value:.3f}') 

print(f'   term3 : {plane_fit.c.value:.3f}') 

# and you can ask what the fitted value of z is given xdata and ydata by saying 

z_fit = line_fit(xdata,ydata) 

 
 
 
 
 
 
 


