
ASTR 323/423 HW #3 
 
1. Oort Constants (15 points) 
 
As shown in class, the Oort Constants are given by 𝐴 = − !
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From these definitions, and our expressions for the orbital angular speed (Ω) and epicyclic 
frequency (κ) derive the following dynamical relationships involving the Oort Constants: 
 

i. Angular Frequency: Ω = 𝐴 − 𝐵 
 

ii. Logarithmic gradient of Angular Frequency: # &'(
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iii. Logarithmic gradient of the Rotation Curve: # &',
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iv. Logarithmic gradient of the radial acceleration: # &'(
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v. Epicyclic Frequency: 𝜅" = −4𝐵(𝐴 − 𝐵) 

 
Hint: In doing some of these derivations, it will be helpful to remember that 𝑑(𝑙𝑛 𝑥) = 𝑑𝑥 𝑥⁄ . 
 
For item (iv), also explain why Ω"𝑅 is proportional to the radial acceleration.  
 
Now, using the values for the Oort Constants given in class (𝐴 = +15.3 km/s/kpc, 𝐵 = −11.9 
km/s/kpc), work out the following: 
 

• The frequency of circular orbits (Ω) in km/s/kpc 
• The circular orbital period, in millions of years 
• The epicyclic frequency (𝜅) in km/s/kpc 
• The ratio of the epicyclic and orbital frequencies (𝜅 Ω⁄ ) 
• Show whether the rotation curve in the solar neighborhood is rising, falling, or constant 

with radius. 
 
2. The Properties of the Spiral Galaxy M101 (15 points)  
 
There is a datafile waiting for you at 
http://burro.case.edu/Academics/Astr323/HW/HW3/M101phot_unbinned_azi.dat 
 
That file has photometry for M101 (taken from Mihos+12): surface brightness in B and V (in 
mag/arcsec2) as a function of radius (in arcminutes). Plot the B-band surface brightness as a 
function of radius (please scale y-axis so that bright is towards the top), and fit a straight line to 
the profile. From the parameters of your fit, work out the following things: 

http://burro.case.edu/Academics/Astr323/HW/HW3/M101phot_unbinned_azi.dat
https://ui.adsabs.harvard.edu/abs/2013ApJ...762...82M/abstract


i. The central surface brightness (𝜇0, in mag/arcsec2) 
ii. The radial scale length of the disk (ℎ, in arcmin) 

iii. 𝑅"0, the radius of the 𝜇+ = 25 mag/arcsec2 isophote (in arcmin) 
iv. The total apparent B magnitude1 of the galaxy 
v. The B-band central luminosity density2 of the galaxy (𝐼1,+, in Lsun/pc2) 

 
On your plot, mark the level of the night sky brightness (𝜇+ ≈ 22.5 mag/arcsec2), and also mark 
where the surface brightness of the galaxy drops below 1% of that night sky brightness.  
Now adopt a distance of d=6.9 Mpc, and work out the following: 

vi. The radial scale length in kpc 
vii. The absolute B magnitude of the galaxy 

viii. The B-band luminosity of the galaxy (in solar units) 
 
Finally, use the Tully-Fisher relationship to estimate M101’s circular velocity. In the 1910s, 
Adrian van Maanen claimed to have detected M101’s rotation by observing the proper motion 
of stars in its outer disk. How long would it take a star at R25 to move 1 arcsecond due to its 
orbital motion? If van Maanen’s measurement of proper motion was correct (roughly 1” 
motion over 10 years), how fast would M101 have to be rotating? 
  

 
1 For this, remember in HW #2 that you worked out the total luminosity of an exponential disk was given by 𝐿"#" =
2𝜋𝐼$ℎ%, where 𝐼$ was the central luminosity density (in 𝐿⨀	𝑝𝑐'%) and ℎ was the scale length (in 𝑝𝑐). But the same 
relationship holds for the observed quantities:  𝑓"#" = 2𝜋𝑓$ℎ%, where 𝑓"#" is the total flux, 𝑓$ is the central flux 
density (flux per square arcseconds) and ℎ is now the scale length in arcseconds).  And since magnitude is simply 
given by 𝑚"#" = −2.5 log 𝑓"#" + 𝐶, we can rewrite this as 

𝑚"#" = −2.5 log(2𝜋𝑓$ℎ%) + 𝐶	
= −2.5 log(2𝜋ℎ%) − 2.5 log(𝑓$) + 𝐶	
= −2.5 log(2𝜋ℎ%) + 𝜇$ 

Just remember that since you have measured 𝜇$ in mag/arcsec2, you want ℎ in arcseconds as well! 
 
2 For this, remember the connection between 𝜇 and 𝐼 that you worked out back in ASTR222: 

𝜇( = −2.5 log 𝐼( + 27.07 



3. Milky Way Rotation Curve (15 points) 
 
In Problem #1, we used the measured values of the Oort Constants to work out kinematic 
properties of the Milky Way’s disk near the location of the Sun. Now we are going to switch it 
around and use the Milky Way rotation curve to work out how the kinematic properties of the 
disk change with radius. 
 
A  smooth model of the Milky Way rotation curve (courtesy Prof McGaugh!) can be found at 
http://burro.case.edu/Academics/Astr323/HW/HW3/MWvrot_BovyRix_RAR.dat 
That data file gives radius in kpc and rotation speed in km/s. 
 
From that data, make the following plots (only plot from R=0 to R=20 kpc): 

• the rotation curve, V(R).  
• a plot of the Oort A and B constants and the epicyclic frequency 𝜅 as a function of 

radius. Your units of these values will all be km/s/kpc, and set your plot limits to run 
from −150	to + 150 km/s/kpc. 

• a plot of Ω, Ω − 𝜅 2⁄ ,	and	Ω + 𝜅 2⁄ 	as a function of radius, setting your plot limits to 
run from 0	to + 100 km/s/kpc. On this plot, also mark a horizontal line showing the 
pattern speed of the Milky Way spiral arms. A recent estimate of this pattern speed 
from Gaia DR2 data is Ω3 = 28.2 ± 2.1 km/s/kpc (Dias+ 19). 

 
Then also calculate the following values: 

• The epicyclic frequency and orbital angular frequency measured at the solar circle 
(Rsun=8.2 kpc). 

• The Oort A and B values measured at the solar circle. Compare these to the values given 
in class; they should agree pretty well. 

• The locations of the inner and outer Lindblad resonances, as well as the co-rotation 
radius — the radius where the orbital frequency and the pattern speed are the same. 
How far away is the Sun from the co-rotation radius? 

 
Coding tip #1: To differentiate the rotation curve and get dV/dR, its easiest just to do this numerically, like this: 

 
dVdR=np.diff(MWdata['V'])/np.diff(MWdata['R']) 
V=0.5*(MWdata['V'][1:]+MWdata['V'][:-1]) 
R=0.5*(MWdata['R'][1:]+MWdata['R'][:-1]) 

 
The first line differentiates the rotation curve by taking the differences at each step, while the second two lines 
give you V and R averaged between each step. That. way dVdR, V, and R are all arrays of the same length, which 
makes them easy to plot. 
 
Coding tip #2: If you need to get a value measured at a particular radius, like the solar circle (Rsun), you can do 
something like this: 

Rsun_idx=np.argmin(np.abs(R-Rsun)) 
print(V[Rsun_idx]) 

 
The first line works out which index in the R array is closest the the solar circle, then the second line prints the 
velocity corresponding to that radius.  

http://burro.case.edu/Academics/Astr323/HW/HW3/MWvrot_BovyRix_RAR.dat
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.5726D/abstract


4. Spherical Density profiles (10 points) 
 
Adopt a spherical mass density profile for the stars in a galaxy’s bulge that is given by 
 

𝜌45678(𝑟) =
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where 𝑀45678  is the total mass of the bulge and 𝑎 is a characteristic scale radius. From this, 
show that3 the enclosed mass (the total amount of mass inside a given radius) is given by  
 

𝑀(< 𝑟) = 𝑀45678
𝑟"

(𝑟 + 𝑎)" 

 
and then from that work out the circular velocity as a function of radius 𝑉:(𝑟). 
 
Finally, work out an analytic expression for the effective radius of the bulge, which is the radius 
that contains half the mass. In other words, you want to work out the radius at which 
𝑀(< 𝑟) = 𝑀45678 2⁄ . 
 
 
5. Galaxy Mass Models (15 points) 
 
Let’s build some mass models which reproduce a Milky Way like rotation curve. These models 
will consist of a disk, a bulge, and a dark matter halo. 
 
 
To work out the rotation speed due to the disk (only), use an exponential disk model, which 
gives a rotation speed which looks like this: 
 

𝑉:,#;<=" (𝑅) = 4𝜋𝐺Σ1ℎ%𝑦"Q𝐼1(𝑦)𝐾1(𝑦) − 𝐼!(𝑦)𝐾!(𝑦)S 
 
where Σ1 is the mass density at R=0, ℎ%  is the radial scale length,	𝐼1, 𝐾1, 𝐼!, 𝐾! are Bessel 
functions4, and 𝑦 = 𝑅/(2ℎ%). If the scale length of the disk is ℎ% = 2.5 kpc and the mass 
density of the disk at the solar circle is ≈ 50	𝑀⊙	𝑝𝑐*", calculate both the central mass density 
(Σ1) and total mass of the disk. 
 
 

 
3 for this problem the following integral will be useful: 
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4 in python, just access these by saying: from scipy.special import i0,k0,i1,k1 



For the Milky Way’s bulge, use the density model for bulges that you worked out in Problem 3. 
To work out the right values for total bulge mass (𝑀45678) and bulge scale radius (𝑎), adopt a 
bulge-to-disk mass ratio of 1:3 and a bulge effective radius of 2.4 kpc, and use that information 
to work out 𝑀45678  and 𝑎. 
 
You can then insert those quantities into the expression you worked out in Problem 3 for the 
circular velocity due to the bulge (only). 
 
 
Finally, to work out the rotation speed due to the halo (only), we will adopt the isothermal halo 
model, which has a density distribution given by  
 

𝜌?@6A(𝑟) =
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where 𝜌1 is the central density and 𝑟:  is the core radius. This gives a rotation curve of  
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Now, to calculate the total rotation curve for your model, remember that velocities add in 
quadrature, so the total rotation curve for you model will be given by 
 

𝑉:,BAB = ]𝑉:,#;<=" + 𝑉:,45678" + 𝑉:,?@6A"  

 
Given the values for your disk and bulge models, calculate and plot the observed Milky Way 
rotation curve (the dataset from problem 3) plus the “disk-bulge only” model rotation curve (so 
set 𝜌1 = 0 for the halo). You should be able to see the problem: the rotation speed of the 
model simply doesn’t match the data. 
 
Then start building a composite model by adopting halo parameters 𝜌1 = 1.0	𝑀⊙	𝑝𝑐*9	, 𝑟: =
300	𝑝𝑐. (Note: these are absolutely incorrect values, but they’ll get you started.) Have your 
code plot five curves on one single plot: 
 

1. the observed rotation curve 
2. the “disk only” model rotation curve 
3. the “bulge only” model rotation curve 
4. the “halo only” model rotation curve 
5. the total “disk+bulge+halo” model rotation curve. 

 



You’ll probably want to color code or line-style your lines in a way that is intuitive to you, and 
then also make sure you have a legend plotted, or else it will get very confusing! 
Once your code is working, fiddle around with the halo parameters (𝜌1, 𝑟:) until the total 
rotation curve looks like a reasonable match to the observed rotation curve. No need to do any 
fancy 𝜒" fitting, you just want to get the important things right: the circular speed at the solar 
radius ought to be ≈ 220 km/s, the rotation curve shouldn’t rise too fast or too slow, and it 
ought to be falling ever so gently between 5 and 15 kpc, but be pretty flat by the time you get 
to 20 kpc. You should be able to get the curves to agree pretty well over the whole radial range. 
 
Note that increasing 𝑟:  will make the halo rotation curve rise more slowly (and vice versa), but if 
you change 𝑟:  you’ll need to adjust 𝜌1 as well, since the two parameters are coupled. If you 
want to raise the rotation curve (at fixed 𝑟:), raise the central density and that will give you 
more mass in the halo. (By plotting the rotation curve components separately, it’s easier to see 
how you want to adjust the parameters of the halo to give a decent match.) 
 
Figure out your “best fit” match, tell me your reasoning (describe how you iterated in on a 
solution), show me the best fit plot, and give me your best fit values for 𝜌1	and	𝑟:. Discuss the 
robustness of your fit as well as any degeneracies. In other words, if you take your best fit 
parameters and change one of them a bit, can you get back to a good fit by adjusting the other 
one? 
 
 
 


