
ASTR 323/423 HW #2 

1. Luminosity Functions 

The Schechter function gives the number of galaxies per unit luminosity, Φ(𝐿)𝑑𝐿. Rewrite this 

using the conversion between absolute magnitude and luminosity to give the number of galaxies 

per unit magnitude, Φ(𝑀)𝑑𝑀. Start with Φ(𝐿), and replace L with M using the magnitude-

luminosity equation. Then take the derivative of M with respect to L to get 𝑑𝑀 𝑑𝐿⁄  so that you 

can replace dL with dM. Once you’ve worked out Φ(𝑀)𝑑𝑀, derive the slope of the faint end 

when luminosity functions are plotted logarithmically (in other words, derive 𝑑(log Φ (𝑀))/
𝑑𝑀) for the faint magnitudes) and show mathematically that in such a plot 𝛼 = −1 corresponds 

to a flat faint end slope. 

 

Next, we’ll construct a luminosity function for galaxies and actually measure this faint end slope. 

Go back to the Sloan Digital Sky Survey SQL search page and run the following SQL search (I 

will explain this syntax in more detail in class), downloading the file in CSV format to your 

computer: 

 

 

Use the redshifts to get distances using Hubble’s law, and then use those distances to work out 

the absolute r-band magnitude 𝑀𝑟 of each galaxy1. Now, naively we could just make a 

luminosity function by making a histogram of log(N) as a function of 𝑀𝑟 but that would be bad 

because this is a magnitude-limited dataset, and it is easier to see bright galaxies than faint 

galaxies, so we would erroneously undercount the faint galaxies. Instead, we will build a 

weighted histogram, where we weight the counts inversely by the maximum volume out to 

which we could find each galaxy given its absolute magnitude. 

 

 
1 For this problem ignore cosmological effects and just assume that Hubble’s law and flat Euclidian geometry work. 

They actually do not on these scales; we are looking at galaxies that are far enough away that we should actually 

take into account the proper geometry of space. Ignoring this introduces errors into our calculation, but they are not 

so large as to render this exercise useless…. 

SELECT TOP 100000 P.objID, P.flags_r, 

  P.ra, P.dec, P.dered_g, P.dered_r, P.dered_i, 

  P.err_g, P.err_r ,P.err_i, 

  P.petroR50_g,P.petroR90_g, 

  S.z, S.zErr, S.velDisp, S.velDisperr, 

  E.oh_p50, E.lgm_tot_p50, E.sfr_tot_p50 

FROM Galaxy as P 

  JOIN SpecObj as S on P.objID = S.BestObjID 

  JOIN galSpecExtra as E on S.SpecObjID = E.SpecObjID 

WHERE S.z>0.00001 AND S.z<0.3 

  AND P.dered_r<17.5 

  AND ((P.flags_r & 0x10000000) != 0) 

  AND ((P.flags_r & 0x8100000c00a0) = 0) 

  AND (((P.flags_r & 0x400000000000) = 0) or (P.err_r <= 0.3)) 

  AND (((P.flags_r & 0x100000000000) = 0) or (P.flags_r & 0x1000) = 0) 

http://skyserver.sdss.org/dr16/en/tools/search/sql.aspx


So first, for each galaxy, given its absolute magnitude 𝑀𝑟 and the apparent magnitude limit of 

the catalog (𝑚𝑟,𝑙𝑖𝑚 = 17.5), write down an expression for the maximum distance 𝑑𝑚𝑎𝑥 to which 

we could see it; in other words, at what distance would its apparent magnitude match our 

limiting magnitude? Then for each galaxy work out the spherical volume 𝑉𝑚𝑎𝑥 corresponding to 

that 𝑑𝑚𝑎𝑥. Make sure your expressions give 𝑑𝑚𝑎𝑥 in Mpc and 𝑉𝑚𝑎𝑥 in Mpc3. 

 

Now we are ready to make the luminosity function, properly weighted by 1 𝑉𝑚𝑎𝑥⁄ . Use numpy’s 

histogram function to make a plot of the log of the weighted counts in bins of absolute 

magnitude that run from –24 to –16 in steps of 0.25 mag: 

  
mbins=np.arange(-24,-16,0.25) 

hist,edges=np.histogram(absmag_r,bins=mbins,weights=1/Vmax) 

bincenters=0.5*(mbins[1:]+mbins[:-1]) 

logN=np.log10(hist) 

plt.scatter(bincenters,logN) 

 

Compare the shape of your LF to that of the Montero-Dorta & Prada "All Galaxies" LF shown in 

class. (Don’t worry that the y-axis values don’t match, since we haven’t normalized the LF the 

same way. But the shape should look comparable.) On your LF, sketch where the Montero-Dorta 

& Prada value for 𝑀∗ lies (making sure to correct their 𝑀∗ − 5 log ℎ value for the Hubble 

constant you've used in your analysis; describe what Hubble constant you used, and thus what 

you calculate for 𝑀∗). Does this 𝑀∗ seem to be reasonable for your LF? In general, describe how 

well or how poorly your LF follows the approximate shape of a Schechter function -- where does 

it look reasonable, where (if anywhere) does it not?  

 

Now choose a range of absolute magnitude over which to fit the faint end power law slope, 

justify that choice, and then fit a straight line to log 𝑁 vs 𝑀𝑟 over that range to derive the 

parameter α for the Schecter function. Plot your fit over your data to make sure your fit looks 

reasonable. Compare your value for α to values discussed in class, and discuss any systematic 

uncertainties that might be affecting your derived value for α. 

 

2. Thick and thin disks (courtesy Sparke & Gallagher) 

Assume the number of stars in the galaxy follows an exponential in radius and z-height: 

 

𝑛(𝑅, 𝑧) = 𝑛0𝑒−𝑅 ℎ𝑅⁄ 𝑒−|𝑧| ℎ𝑧⁄  

 

Integrate that equation over all z (i.e., from −∞ 𝑡𝑜 + ∞) to show that the surface density of stars 

(number per unit area) at a radius R is given by Σ(𝑅) = 2𝑛0ℎ𝑧𝑒−𝑅 ℎ𝑅⁄ . If the stellar population 

has an average luminosity per star of 〈𝐿〉, the surface luminosity density is then 𝐼(𝑅) = 〈𝐿〉Σ(𝑅). 

Show then that the total luminosity of the disk is given by 𝐿𝑡𝑜𝑡 = 2𝜋𝐼(0)ℎ𝑅
2 . 

 

For the Milky Way, 𝐿𝑡𝑜𝑡,𝑉 ≈ 1.5 × 1010𝐿⊙,𝑉, ℎ𝑅 ≈ 4 kpc, and 𝑅⊙ ≈ 8 kpc. Show that at the 

solar circle, 𝐼 ≈ 20 𝐿⊙,𝑉 𝑝𝑐−2. As you will work out later in this problem set, the mass surface 

density at the solar circle is ≈ 50 𝑀⊙ 𝑝𝑐−2, which gives a mass-to-light ratio in solar units of 



𝑀/𝐿 ≈ 2.5. This value is higher than what we get if we measure the value using stars within 

100 parsecs of the Sun. Why is that so? Think about what kind of stars live only near the 

midplane of the disk, and what their (individual) mass-to-light ratios would be. 

 

Finally, if 90% of the total stars in the midplane of the Galaxy’s disk come from the thin disk, 

and 10% come from the thick disk, and if the thick disk has a scale height three times larger than 

the thin disk, show that the surface density of stars follows the relationship Σ𝑡ℎ𝑖𝑛(𝑅) ≈
3Σ𝑡ℎ𝑖𝑐𝑘(𝑅). (For this problem, assume the thin and thick disks have the same scale length, which 

is not a good assumption, but it makes the problem work!) 

 

 

3. Photometric Selection (courtesy Sparke & Gallagher) 

The histogram below shows the density of stars near the North Galactic Pole (NGP) as a function 

of B–V color, in a sample of stars chosen to have apparent magnitudes in the range mV=19–20. 

The dashed lines shows the prediction of a star count model for stars in the thin disk (red), thick 

disk (green), halo (blue) of the Galaxy, while the black line shows the sum of those components. 

Note how the thin disk and halo populations separate out nicely by color in this magnitude range. 

In this problem you will see why this works. 

 

 

 
 

Use the Hipparcos color-magnitude diagram for solar neighborhood stars (below left) as your 

model for thin disk stars, and the color-magnitude diagram for the metal-poor globular cluster 

M92 (below right) as your model for halo stars. (Note that in the M92 CMD, there are stars on 

the lower main sequence down to B–V ~ 1.5 and redder, it’s just that they aren’t showing on the 

plot.)  

 

 

 



 

 

 
First look at blue stars, with colors B–V ~ 0.4. How far away must a disk star of this color be if it 

had mV=20? In a population of stars like M92's, how far away would stars of this color be if they 

were at mV=20?  

 

For redder stars, what absolute magnitudes could a disk star have at B–V=1.5? How far would 

these types of stars lie if they were in our sample at mV=20? In M92, the reddest stars have B-V 

~ 1.2. How distant would these stars be in our sample?  

 

Given those calculations, explain why the reddest stars in the first figure are likely to belong to 

the disk, while the bluest stars belong to the halo. 

 

 

4. Gaia and stellar kinematics 

I have pulled down a Gaia dataset that contains proper motion and distance data for stars with 

parallaxes >5 milliarcsec that also live within 10 degrees of the disk plane. It's big enough that its 

best to store it as a binary fits table, which you can read in python by saying: 

from astropy.table import Table 

import os 
filename='Gaia_bLT10_pGT5.fits' 
if not os.path.isfile(filename): 

   gaia_data=Table.read('http://burro.case.edu/Academics/Astr323/HW/HW2/'+filename) 
   gaia_data.write(filename) 
else: 
   gaia_data=Table.read(filename) 

 

There are close to 300,000 stars in that database, and if you say gaia_data.colnames, you 

will see the information contained in the table. The file contains: 



• ra, dec: coordinates in right ascension and declination, both in degrees. 

• l,b: coordinates in Galactic longitude and latitude, both in degrees. 

• parallax: parallax in milli-arcsec  

• pmra,pmdec: proper motion (milli-arcsec/yr) in ra and dec coordinates 

• pml,pmb: proper motion (milli-arcsec/yr) in Galactic l and b coordinates 

• phot_g_mean_mag, bp_rp: apparent Gp magnitude and Bp-Rp color (these are the Gaia 

filter names) 

• star_type: a coding I added: (1=main sequence, 2=red giant, 3=white dwarf, 0=other) 

And remember you access the data by saying for example gaia_data['parallax']. If you wanted the 

parallax data only for RGB stars, you could say 

rgb_stars = gaia_data['star_type']==2 

p = gaia_data['parallax'][rgb_stars] 

Important: Gaia provides parallax and proper motion with units of milli-arcsec and milli-

arcsec/yr, respectively. Don’t forget to convert these to arcsec and arcsec/yr! 

First, calculate the distance to each star from the parallax, convert the apparent magnitude to 

absolute magnitude, and then make a color magnitude plot to make sure things look sensible. 

There are too many stars to plot each one as a dot, so use this little code snippet to make a binned 

density plot. 

Now, combine the distance and the proper motion in the b direction (Galactic latitude) to 

calculate each star's W velocity – the velocity up/down out of the plane. Look in the notes where 

we talked about proper motion and velocities to remind yourself how we do this calculation. 

Do the following for each of the following three samples: All MS stars,  RGB stars, blue MS 

stars with Bp-Rp<0.5: 

• Plot a histogram of the W velocities for each sample (set your histogram to have 50 bins 

running from W=–75 km/s to +75 km/s) 

• Use each sample to find the Sun's W velocity and the velocity dispersion of the stars in 

the sample. 

 

Give a good astronomical discussion of why the values are different or not between the different 

samples, and compare your numbers to the values given in class. 

 

5. Gaia and the vertical structure of the disk 

Here we are going to compute the scale height of the thin disk using Gaia data. Before tackling 

the data, though, work this out: if the density of stars follows an exponential like 𝜌 ~ 𝑒−𝑧 ℎ𝑧⁄ , if 

http://burro.case.edu/Academics/Astr323/HW/HW2/cmdplot.py
http://burro.case.edu/Academics/Astr323/HW/HW2/cmdplot.py


you plot log10 𝜌  vs 𝑧, how does the slope of the line relate to the scale height ℎ𝑧? 

 

I pulled down another Gaia dataset for stars within 10 degrees of the North or South Galactic 

Pole (in other words, straight up or down out of the disk). For this sample, I didn’t require that 

they be within 200 pc of the Sun, but I did make sure they had good parallaxes. So in this 

sample, there is no hard distance limit, but faint stars drop out of the sample because its hard to 

get a good parallax for faint stars. 

 

You can read the file the same way as you did above, but this time use filename = 

'Gaia_NSGP.fits'. Like the first dataset, there are about 300,000 stars in that database. 

 

Like before, calculate the distance and apparent magnitude and plot a CMD to make sure 

everything looks good. 

 

Then do the following for the following two samples: All MS stars, red clump stars in the 

RGB. You should be able to spot the red clump in your CMD; what is its absolute magnitude? 

Then select RGB stars which have an absolute magnitude that within 0.5mag of the clump center 

as your red clump sample.  

For each of those two samples, count the number of stars in bins of distance, and convert that 

into a density of stars as function of distance from the plane. Use this code to do that: 

 

N,edges=np.histogram(distance,bins=100,range=[0,4000]) 

vol=(4.*np.pi/3)*edges**3 
dvol=np.diff(vol) 
logdens=np.log10(N/dvol) 

bincent=0.5*(edges[1:]+edges[:-1]) 
plt.scatter(bincent,logdens) 

 

In your writeup, explain line-by-line what that code snippet is doing. I want you to understand 

the code, not just run it! 

 

Fit a straight line to the data for bins <= 1 kpc distant, where the thin disk dominates. Give the 

parameters of the fit, overplot it on your data, and use it to derive the thin disk scale height. 

 

After you've done that for each sample, compare the two numbers (the scale heights for the “All 

MS” sample and the “red clump” sample). How well do they compare to each other, and how 

well do they compare to values given in class? The red clump stars should give a better estimate 

for the scale height than the All MS sample. Explain why. Think about the luminosity spread of 

the two samples, and how that connects to the numbers of stars you observe as a function of 

distance. 

 

How well does your fit work over the whole range of distances on your plot (not just where you 

fit)? Explain any differences you see between your fit and the behavior of the data points.  

 

 



6. The mass density of the disk 

The scale height and vertical velocity dispersion are tracing the surface mass density of the disk. 

A rough approximation for how they are related was given in class: 𝜎𝑊
2 ≈ 2𝜋𝐺Σℎ𝑧. 

 

Using values that you calculated in the previous two problems to solve for the surface mass 

density (in 𝑀⊙ pc−2) of the Galactic disk. PLEASE DON'T WORK IN SI UNITS!! 

Remember, if you measure distance in parsecs, mass in solar masses, and velocity in km/s, a 

reasonable approximation for the gravitational constant is 𝐺 = 4.3 × 10−3. 

 

Now take your surface density and divide by the disk thickness (roughly twice your measured 

disk scale height) to get a rough estimate of the local volume density of the disk: 𝜌 ≈ Σ (2ℎ𝑧)⁄  

(in 𝑀⊙ pc−3). 

 

Compare your values of Σ and/or 𝜌 to estimates published in the refereed literature for the mass 

density of the Milky Way's disk in the solar neighborhood. Use the ADS abstract service to look 

up a few of the following papers and see what they find: Chakrabarti et al 2021; McGaugh 2016; 

Bienayme et al 2005; Holmberg & Flynn 2004; Siebert et al 2003. Also compare your estimate 

to the observed density of stars and gas described in McKee et al 2015.  

 

 

 

Grad Student problem #1 (courtesy Heather Morrison): 

Assume that you are observing stars in a square degree straight up out of the disk plane, that the 

thick disk has a scale height of 1 kpc and the thin disk 300 pc, and the halo has an r-3 density 

distribution. Furthermore, assume that the ratio of thin to thick to halo stars at the Sun is 

1000:100:1 and that the local density of halo giants is 35 per kpc3. Draw plots of the number of 

stars expected as a function of z distance (i.e., the number per square degree per parsec of 

sightline) from z=0 to 15 kpc. At what distance will the counts of thin disk stars peak? thick disk 

stars? halo stars? (You will need to account for the variation in volume element along the line of 

sight as well as the variation in star density.)  

 

Grad Student problem #2: 

Let's go back to the solar motion problem and work out the U and V solar motion as well. 

 

First, if we restrict our analysis to stars in the disk plane (small b), the observed velocity of stars 

projected onto Galactic longitude is a simple linear combination of trig functions that looks like 

this: 

 

𝑣𝑙 = ±𝑈⊙ × trig𝑈(𝑙) ± 𝑉⊙ × trig𝑉(𝑙) 

https://ui.adsabs.harvard.edu/


 
Work out what the trig functions are and make the plus/minus decisions. It's easiest just to do 

this with geometry and common sense: make a sketch, draw vectors, think. Explain how you 

arrived at your answer. 

 

Now make plots of 𝑣𝑙 vs 𝑙 for two samples (separately): RGB stars, blue MS stars with Bp–

Rp<0.5. For each sample, fit that function to the data (make sure you also overplot your fit) to 

derive 𝑈⊙ and 𝑉⊙ for your two samples. This is a nonlinear fit you are making, which can be 

tricky. Use scipy.optimize.curve_fit, and as an input guess give it the values for 

𝑈⊙ and 𝑉⊙ that I gave in class. Discuss your fitted values for 𝑈⊙ and 𝑉⊙, and how well each one 

matches the solar motion values given in class. Describe differences between the values derived 

for the two samples. 
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