Table 7.1

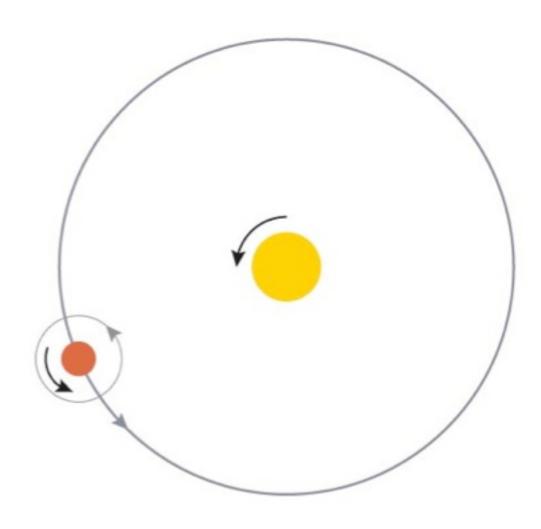
TABLE 7.1 The Planetary Data^a

Photo	Planet	Relative Size	Average Distance from Sun (AU)	Average Equatorial Radius (km)	Mass (Earth = 1)	Average Density (g/cm ³)	Orbital Period	Rotation Period	Axis Tilt	Average Surface (or Cloud-Top) Temperature ^b	Composition	Known Moons (2012)	Rings?
	Mercury	•	0.387	2440	0.055	5.43	87.9 days	58.6 days	0.0°	700 K (day) 100 K (night)	Rocks, metals	0	No
	Venus	•	0.723	6051	0.82	5.24	225 days	243 days	177.3°	740 K	Rocks, metals	0	No
	Earth	•	1.00	6378	1.00	5.52	1.00 year	23.93 hours	23.5°	290 K	Rocks, metals	1	No
	Mars		1.52	3397	0.11	3.93	1.88 years	24.6 hours	25.2°	220 K	Rocks, metals	2	No
	Jupiter		5.20	71,492	318	1.33	11.9 years	9.93 hours	3.1°	125 K	H, He, hydrogen compounds ^c	67	Yes
2	Saturn		9.54	60,268	95.2	0.70	29.5 years	10.6 hours	26.7°	95 K	H, He, hydrogen compounds ^c	62	Yes
	Uranus	•	19.2	25,559	14.5	1.32	83.8 years	17.2 hours	97.9°	60 K	H, He, hydrogen compounds ^c	27	Yes
	Neptune	•	30.1	24,764	17.1	1.64	165 years	16.1 hours	29.6°	60 K	H, He, hydrogen compounds ^c	13	Yes
	Pluto		39.5	1160	0.0022	2.0	248 years	6.39 days	112.5°	44 K	Ices, rock	5	No
	Eris	<u>:</u>	67.7	1200	0.0028	2.3	557 years	1.08 days	78°	43 K	Ices, rock	1	No

^aIncluding the dwarf planets Pluto and Eris; Appendix E gives a more complete list of planetary properties.

^bSurface temperatures for all objects except Jupiter, Saturn, Uranus, and Neptune, for which cloud-top temperatures are listed.

^cInclude water (H₂O), methane (CH₄), and ammonia (NH₃).

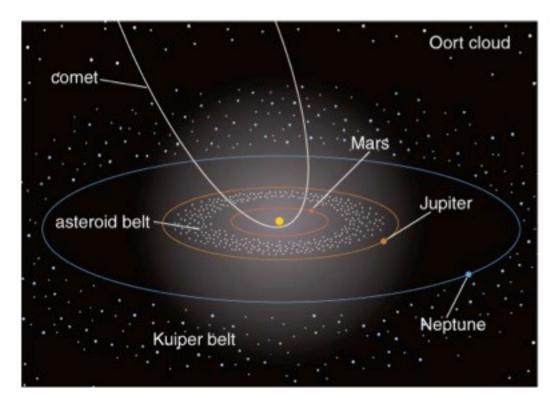

What have we learned?

- What does the solar system look like?
 - Planets orbit Sun in the same direction and in nearly the same plane.
- What can we learn by comparing the planets to one another?
 - Comparative planetology looks for patterns among the planets.
 - Those patterns give us insight into the general processes that govern planets.
 - Studying other worlds in this way tells us about our own planet.

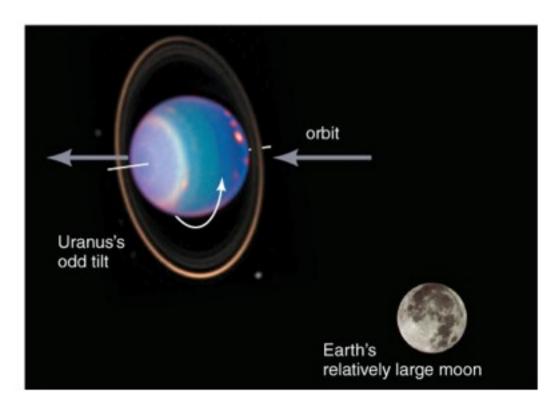
7.2 Patterns in the Solar System

- Our goals for learning:
 - What features of our solar system provide clues to how it formed?

Motion of Large Bodies


- All large bodies in the solar system orbit in the same direction and in nearly the same plane.
- Most also rotate in that direction.

Two Major Planet Types


- Terrestrial planets are rocky, relatively small, and close to the Sun.
- Jovian planets are gaseous, larger, and farther from the Sun.

Swarms of Smaller Bodies

Many rocky
 asteroids and icy
 comets populate
 the solar system.

Notable Exceptions

Several exceptions to the normal patterns need to be explained, such as:

- Uranus spinning on its side, or
- The Earth having a moon that is large, relative to its host planet.

What have we learned?

- What features of the solar system provide clues to how it formed?
 - Motions of large bodies: all in same direction and plane
 - Two main planet types: terrestrial and jovian.
 - Swarms of small bodies: asteroids and comets
 - Notable exceptions: rotation of Uranus,
 Earth's large moon