How did Copernicus, Tycho, and Kepler challenge the Earth-centered model?

Johannes Kepler (1571-1630)

- Kepler first tried to match Tycho's observations with circular orbits
- But an 8-arcminute discrepancy led him eventually to ellipses.
- "If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy."

What is an ellipse?

a Drawing a circle with a string of fixed length.
b Drawing an ellipse with a string of fixed length.

c Eccentricity describes how much an ellipse deviates from a perfect circle.

Interactive Figure k

An ellipse looks like an elongated circle.

Eccentricity of an Ellipse

Interactive Figure k

What are Kepler's three laws of planetary motion?

- Kepler's First Law: The orbit of each planet around the Sun is an ellipse with the Sun at one focus.

What are Kepler's three laws of planetary motion?

- Kepler's Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times.

This means that a planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun.

What are Kepler's three laws of planetary motion?

Kepler's Third Law

- More distant planets orbit the Sun at slower average speeds, obeying the relationship

$$
p^{2}=a^{3}
$$

$p=$ orbital period in years
$a=$ avg. distance from Sun in AU

Kepler's Third Law

Kepler's Third Law

Kepler's Third Law

Thought Question

An asteroid orbits the Sun at an average distance $a=4 \mathrm{AU}$. How long does it take to orbit the Sun?
A. 4 years
B. 8 years
C. 16 years
D. 64 years

Hint: Remember that $p^{2}=a^{3}$

Thought Question

An asteroid orbits the Sun at an average distance $a=4 \mathrm{AU}$. How long does it take to orbit the Sun?
A. 4 years
B. 8 years
C. 16 years
D. 64 years

We need to find p so that $p^{2}=a^{3}$.
Since $a=4, a^{3}=4^{3}=64$.
Therefore, $p=8, p^{2}=8^{2}=64$.

Competing Models

